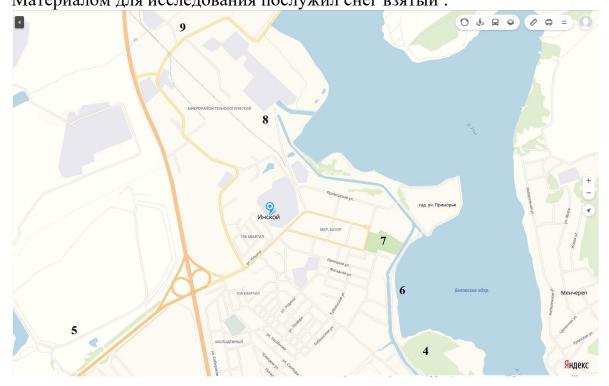
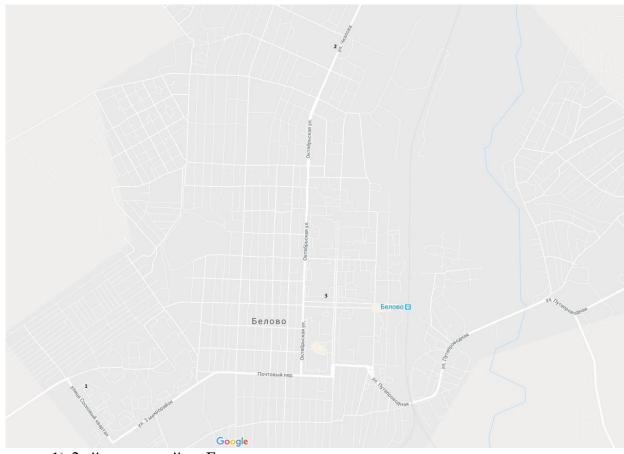
ИССЛЕДОВАНИЕ ВЫБРОСОВ В АТМОСФЕРУ ПУТЁМ ИЗУЧЕНИЯ ТАЛОГО СНЕГА

И.А. Лукин, К.А. Сухих, Д.В. Ефанов, А.В. Астафьев

Научный руководитель: Л.И. Законнова, д.б.н. КузГТУ


Филиал КузГТУ в г. Белово


Актуальность. Снежный покров может служить индикатором загрязнения окружающей среды. Изучая его можно выявить не только состав загрязнений, но и динамику сезонных выбросов с различных заводов и фабрик.

В связи с этим цель работы изучить выбросы вредных веществ в атмосферу путём изучения талого снега.

Материалы и методы исследования.

Исследование было проведено в период с февраля 2019 по апрель 2019. Материалом для исследования послужил снег взятый:

- 1) Зий микрорайон Белово
- 2) Кузбасс радио (цинковый завод)
- 3) Главпочтамт. Белово
- 4) "сосёнки" сосновый бор на острове в Инском
- 5) Золоотвал
- 6) Водохранилище
- 7) приморский парк. Инской
- 8) Беловская ГРЭС
- 9) микрорайон технологический. Инской

Методы исследования:

Пробы снега взяты через всю толщу снега, в равной массе 450грамм, были помещены в стеклянные емкости и закрыты пластиковыми крышками. Снег был помещен в теплое помещение для таяния.

Растаявший снег исследовался по следующим параметрам:

- 1. Концентрация взвешенного вещества путем фильтрования.
- 2. Наличие хрома, железа и рН определяли при помощи тест-систем для экспресс анализа (индикаторная бумага)

Наличие сульфатов и алюминия исследовали при помощи соответствующих тест комплектов.

Полученные результаты и их обсуждение.

Таблица 1 – Результаты исследований

№ пробы	Плот-	Концентрация, мг/л	pН	Fe мг/л	Сr мг/л	SO ₄ ²⁻ мг/л	Al мг/л	Сумма загрязнителей
1. Третий мкр.	0,9978	10	6,5	0	3-10	0,3	0,5	7,8
2. Кузбасс радио	0,9931	90	7	0	3-10	0,4	1	8,4
3. Почта Белово	0,9931	20	7,5	0	3-10	0,5	0,3	7,8
4. Сосновый бор	0,9943	10	5	0-30	3-10	0,3	0,4	30,5
5. Золоотвал	0,9960	10	5	0	3-10	0,5	0,2	7,7
6. Водохрани лище	0,9887	0	7,5	0	0-3	0,1	0,3	1,9
7. Парк Инской	0,9921	0	5,5	0	10+	0,2	0,2	10,4
8. ГРЭС	0,9928	20	6	0	10+	0,3	0,4	10,7
9. Технологический район	0,9944	40	4,5	0	3-10	0,1	0,5	7,6

Исследование pH показало, что в среднем значение pH=6.05, и среда кислая. Самое низкое значение pH=4.5, в технологическом районе Инского, самое высокое значение pH = 7.5, в приморском парке Инской и главпочтамт в Белово.

Из фильтров самый грязный снег оказался в районе цинкового завода в Белово, с разницей до и после в взвешивания в 90мг/литр. Плотность талого снега во всех пробах была примерно одинакова, но самая высокая проба №1 (Змикрорайон) и самая низкая в пробе №6 (Беловское водохранилище).

Анализ общего железа не выявил не ионов Fe^{3+} , ни ионов Fe^{2+} , во всех пробах, за исключением пробы N (сосновый бор на острове в Инском).

Во всех пробах было выявлено содержание хрома, самое высокое в пробах№7 (приморский парк в Инском) и №8 (Беловская ГРЭС), самое низкое содержание в пробе №6 (Беловское водохранилище). В остальных, содержание было в пределах 3-10 мг/литр.

Сульфаты SO²⁻4 обнаружены во всех пробах, минимальное содержание в пробах №6 и №9, максимальное содержание в пробах №3 и №5.

Алюминий был обнаружен во всех пробах, в среднем его оказалось 0,42 мг/литр, при максимуме в пробах № 1,№2,№9, и минимуме в пробе № 5.

Анализируя полученные данные следует отметить, что ни в одной из проб не было обнаружено более одного компонента с максимальной

величиной. В пробах №5, №7 и №9, наряду с максимальным содержанием одного из компонентов, выявлено минимальное значение другого, а в пробе №6 выявлено минимальное содержание сразу двух компонентов Cr и SO²⁻4.

Таким образом мы можем сделать вывод: во всех пробах, кроме пробы №6 выявлено достаточно высокое содержание примесей. Самый чистый снег по шести параметрам, оказался снег собранный с поверхности беловского водохранилища.

По сумме загрязнений самым грязным оказался снег, собранный в сосновом бору — 30,5 мг/литр. На втором месте снег из проб №7 (Парк Инской) и №8 (ГРЭС). Самым чистым оказался снег с Беловского водохранилища, проба №6.