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ВИЗУАЛЬНАЯ ПРЕДИКТИВНАЯ АНАЛИТИКА В ЦИФРОВОЙ 

ТРАНСФОРМАЦИИ ЭНЕРГЕТИКИ АРКТИКИ 

 

Введение 

Цифровая трансформация энергетической отрасли направлена на пе-

реход от традиционной реактивной модели эксплуатации, основанной на 

устранении уже случившихся отказов, к проактивному управлению, бази-

рующемуся на прогнозировании технического состояния активов. Данный 

переход приобретает особую актуальность для Арктической зоны РФ, где 

энергетическая инфраструктура функционирует в условиях экстремальных 

климатических нагрузок, геокриологической нестабильности и простран-

ственной удалённости [1]. Огромные расстояния, низкая плотность населе-

ния и отсутствие развитой транспортной сети делают регулярное физиче-

ское присутствие персонала на объектах экономически нецелесообразным, 

а в периоды неблагоприятных погодных условий – невозможным. Тради-

ционный подход, требующий периодических инспекций, не способен 

обеспечить должный уровень контроля над территориально распределён-

ной инфраструктурой [2]. Внедрение систем, способных выполнять мони-

торинг в автономном режиме, становится не просто инструментом оптими-

зации, а необходимым условием для обеспечения надёжности энергоснаб-

жения. 

Фундаментальным барьером для построения точных прогнозных мо-

делей является дефицит данных о реальном состоянии удалённых активов. 

Решение данной проблемы лежит в области применения технологий ком-

пьютерного зрения для анализа визуальных данных, получаемых с беспи-

лотных авиационных систем (БАС) и стационарных камер. Визуальные об-

разы содержат информативные паттерны – начальные стадии коррозии, 

микротрещины, динамику нарастания обледенения, деформацию опорных 

конструкций – которые являются ранними предикторами и количествен-

ными индикаторами развивающихся дефектов. 

Концептуальная модель визуальной предиктивной аналитики 

Переход от диагностической констатации дефекта к предиктивной 

оценке остаточного ресурса требует построения многоуровневой системы 

обработки данных. Система технического зрения на основе нейронных се-

тей в данной парадигме выступает не как конечный диагност, а как ин-
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струмент извлечения количественных метрик, которые служат входными 

данными для моделей прогнозирования. Концептуальная модель такого 

процесса включает несколько последовательных этапов, представленных 

на рисунке 1. 

 
Рис. 1.  Концептуальная модель процесса визуальной предиктивной  

аналитики 

 

Этап 1. Сбор визуальных данных. На данном этапе формируется пер-

вичный поток информации. Для инспекции линейно-протяжённых объек-

тов (ЛЭП, трубопроводы) применяются БАС, обеспечивающие простран-

ственный охват. На критически важных узлах (трансформаторные под-

станции, ДЭС) устанавливаются стационарные камеры. Для повышения 

информативности используется мультимодальный подход, сочетающий 

съёмку в видимом (RGB) и инфракрасном (IR) диапазонах. RGB-сенсоры 

позволяют идентифицировать структурные дефекты, в то время как IR-

сенсоры выявляют тепловые аномалии (перегрев контактных соединений), 

являющиеся предикторами аварийных отказов. 

Этап 2. Извлечение количественных метрик. Собранные изображе-

ния обрабатываются нейросетевыми моделями (CNN) [4]. Ключевая задача 

этапа – трансформация качественного визуального образа в объективный 

числовой показатель. Сегментационные модели (U-Net, Mask R-CNN) 

определяют точную площадь коррозии (в см²) или объём ледовых отложе-

ний. Детекторы объектов, такие как YOLO [5], в связке с моделями опреде-

ления ключевых точек (Keypoint Detection) фиксируют пространственное 

смещение опоры (в мм) относительно референсных значений. Таким обра-

зом, субъективная оценка "есть дефект" заменяется объективным измере-

нием, пригодным для математического анализа. 

Этап 3. Формирование временных рядов. Одиночное измерение яв-

ляется диагностическим; для прогнозирования необходим анализ динами-
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ки. Последовательность количественных метрик, полученных в разные 

моменты времени {m₁, m₂, ..., mₙ} с заданной периодичностью, формирует 

временной ряд. Данный ряд описывает траекторию деградации объекта. 

Частота сбора данных (дискретизация) определяется ожидаемой скоростью 

процесса: для медленной коррозии это могут быть месяцы, для нарастания 

обледенения – часы. 

Этап 4. Предиктивное моделирование. Сформированные временные 

ряды поступают на вход математических моделей второго уровня. Для про-

гнозирования процессов с линейной или близкой к линейной динамикой 

(например, равномерный износ) могут применяться регрессионные моде-

ли. Для анализа сложных, нелинейных процессов, зависящих от множества 

внешних факторов (например, деформация опор из-за таяния мерзлоты под 

влиянием температуры), используются более сложные архитектуры, такие 

как рекуррентные нейронные сети (LSTM, GRU), способные улавливать 

долгосрочные зависимости в данных. 

Этап 5. Формирование прогноза. Результатом работы предиктивной 

модели является прогностическая оценка, которая служит основой для 

принятия управленческих решений в системах ТОиР (техническое обслу-

живание и ремонт) [3]. Прогноз может быть выражен в нескольких формах: 

- прогноз остаточного ресурса: оценка времени до достижения объ-

ектом предельного состояния; 

- вероятность отказа: оценка вероятности отказа в заданном времен-

ном интервале; 

- рекомендации для системы ТОиР: автоматическое формирование 

заявок на техническое обслуживание при превышении прогностическими 

показателями пороговых значений. 

Выводы 

Визуальная предиктивная аналитика является неотъемлемым компо-

нентом цифровой трансформации энергетики, особенно в условиях Аркти-

ки. Данный подход позволяет решить проблему информационного дефици-

та для удалённых активов, преобразуя визуальные данные в основу для 

принятия проактивных управленческих решений. 

Применение нейросетевых моделей для извлечения количественных 

метрик дефектов и последующий анализ их динамики во времени обеспе-

чивают возможность перехода от планово-предупредительных и аварийно-

восстановительных ремонтов к обслуживанию по фактическому состоянию 

и прогнозу. Данный подход напрямую способствует повышению надёжно-

сти энергоснабжения, снижению эксплуатационных затрат и обеспечению 

промышленной безопасности на стратегически важных территориях Рос-

сийской Федерации. Дальнейшие перспективы развития данного направле-

ния связаны с созданием гибридных предиктивных моделей, интегрирую-
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щих визуальные данные с телеметрией (SCADA), метеорологическими 

прогнозами и данными геокриологического мониторинга. 
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