УДК 504.054

АНТРОПОГЕННОЕ ВОЗДЕЙСТВИЕ ТЭЦ НА ОКРУЖАЮЩУЮ СРЕДУ

Е.В.Зубов, студент гр. ИЗб-191, III курс Научный руководитель: Теряева Т.Н., д.т.н., доцент профессор Кузбасский государственный технический университет имени Т.Ф Горбачева, г. Кемерово

Теплоэлектроцентрали(ТЭЦ) - является источником тепловой энергии в централизованных системах теплоснабжения. Источником тепла поступает потребителям в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов, находясь непосредственно в городской черте. ТЭЦ получили широкое распространение в районах и городах с высоким потреблением теплоты. Централизованное теплоснабжение потребителей осуществляется через систему теплофикации. Из-за потерь радиус передачи теплоты (пара, горячей воды) не превышает около 15 км в крупных городах; загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км.

Рисунок 1 – Градирни Ново-Кемеровской ТЭЦ

Основным видом топлива для ТЭЦ является уголь, водоугольные топлива, мазут, дизельное топливо или природный газ. Переход на природный газ является самым оптимальным решением как для владельцев, потребителей и экологии вокруг ТЭЦ. Однако и при работе на газе ТЭЦ выбрасывают в

атмосферу достаточное количество загрязняющих веществ, и компании, судя по их заявлениям, продолжают работать над снижением вредного воздействия на окружающую среду [1].

ТЭЦ оказывают значительное негативное воздействие на все элементы окружающей природной среды. [2]Это, прежде всего, химическое загрязнение. При работе ТЭЦ в атмосферу попадают такие загрязнителей, как оксиды азота, углерода, диоксид серы, зола. Например, диоксид серы SO_2 , который является одним из наиболее токсичных газообразных выбросов, который составляет примерно 99% выбросов сернистых соединений (остальное количество приходится на триоксид серы $-SO_3$). Его плотность -2,93 кг/м³, температура кипения -195 °C. Продолжительность пребывания SO_2 в атмосфере сравнительно невелика, но он принимает участие в каталитических, фотохимических и других реакциях в результате которых окисляется и выпадает на землю в виде сульфатов. Присутствие значительных количеств аммиака NH_3 и некоторых других веществ сокращает время жизни SO_2 до нескольких часов. В сравнительно чистом воздухе диоксид серы присутствует в воздухе 15 -20 суток. В присутствии кислорода SO_2 окисляется до SO_3 и вступает в реакцию с водой, образуя серную кислоту.

Загрязнение гидросферы происходит органическими и взвешенными веществами, поступающими со сточными водами ТЭЦ. Также ТЭЦ оказывает различные виды физических воздействий, таких как тепловое и акустическое.

Таблица – Выбросы ТЭЦ по городу Москва [3]

	Азота диоксид	Серы диоксид	Взвешенные вещества	Ванадия пятиокись
Все ТЭЦ	0.09282	0.01978	0.001137	8.867 10 ⁻⁵
ТЭЦ В	0.0001169	-	-	-
ТЭЦ С	0.005304	0.002226	9.33 10 ⁻⁶	9.33 10 ⁻⁶
ТЭЦ D	0.002578	0.0001041	2.559 10 ⁻⁸	2.559 10-8
тэц Е	0.002722	0.0005522	4.277 10 ⁻⁶	4.277 10 ⁻⁶
ТЭЦ F	0.008321	0.0003704	1.826 10 ⁻⁶	1.826 10 ⁻⁶
н дет	0.004826	0.0006333	2.304 10 ⁻⁶	2.304 10 ⁻⁶
ТЭЦЈ	0.0081	0.0004505	3.797 10 ⁻⁶	3.797 10 ⁻⁶
тэц к	0.01109	0.002628	1.009 10 ⁻⁵	1.009 10 ⁻⁵
ТЭЦ L	0.009543	0.002456	0.001048	0
ТЭЦ N	0.01358	0.003917	3.261 10 ⁻⁵	3.261 10 ⁻⁵
о дет	0.01464	0.003161	1.201 10 ⁻⁵	1.201 10 ⁻⁵
ТЭЦР	0.009277	0.003277	1.239 10 ⁻⁵	1.239 10 ⁻⁵
ТЭЦ Q	0.0002025	0	0	0
ТЭЦ R	9.062 10 ⁻⁵	0	0	0
ТЭЦ С	0.001961	5.828 10 ⁻⁶	0	0
ТЭЦ М	0.0002861	0	0	0
ТЭЦ V	0.0001923	0	0	0

Кроме того, деятельность теплоэлектростанций связана с образованием большого количества отходов различных классов опасности, значительную часть которых составляют золошлаковые отходы (ЗШО). оказывающих негативное влияние на все компоненты окружающей природной среды.

Рисунок 2 – Золошлаковые отвалы

Основные экологические проблемы, возникающие при образовании и размещении ЗШО, приведены ниже [4]:

- 1. Образование токсичных элементов в продуктах сжигания угля, которые в виде ЗШО поступают в окружающую среду.
- 2. Загрязнение токсичными элементами, тяжелыми металлами поверхностных и подземных источников, земли, почвы при складировании и хранении ЗШО.
- 3. Отчуждение больших территорий с целью строительства золоотвалов для размещения ЗШО.
- 4. Неудовлетворительное состояние переработки ЗШО в товарные продукты.

Следует особо подчеркнуть, что защита подземных и поверхностных вод от загрязнения токсичными химическими элементами и их соединениями является одной из наиболее серьезных и сложных проблем.

К недостаткам работы ТЭЦ относится необходимость работы по тепловому графику потребителей. ТЭЦ должна выдавать потребителю значительное количество электричества при низком запросе на пар. Поэтому мощность турбогенераторов используется неравномерно и необходимо дублировать электрические мощности ТЭЦ конденсационными турбоагрегатами. Так же ТЭЦ занимают огромные площади, очень дороги в сооружении, остановка и запуск — сложнейшие технологические процессы.

С конца XX века находят применение мини-ТЭЦ, в которых используются газопоршневые, газотурбинные, микротурбинные электросиловые агрегаты. Источник теплоты — природный или попутный газ, органическое топливо, не загрязняющее атмосферу твёрдыми выбросами [5].

Рисунок 3 – Мини-ТЭЦ Руза

Мини-ТЭЦ размещают в непосредственной близости от потребителей энергии — снижаются или отпадают проблемы с теплосетями, электрическая энергия, выработанная на мини-ТЭЦ. Основное преимущество мини-ТЭЦ — близость к потребителям тепловой энергии. Снижаются или отпадают проблемы с теплосетями (трубопроводы, обеспечивающие подачу тепловой энергии от ТЭЦ к потребителям). В случае аварии, разрыва в теплосети возникают большие проблемы: разрытие грунта, временное отчуждение территории для ремонта теплосети, как правило, перекрывается движение автотранспорта. По советским нормативам теплосети подлежали замене через 20-30 лет. На основе двигателей внутреннего сгорания существует оборудование «мини-ТЭЦ», позволяющее обеспечивать электро- и теплоснабжение отдельных домов, в том числе и индивидуальных домов (коттеджей). Неэффективные ТЭЦ в скором времени будут закрыты из-за зеленой политики, проводимой государством, либо нужны будут средства для модернизации старых предприятий.

Что касается Сибири, ситуацию ухудшает резко континентальный климат, а также низкая способность атмосферы к самоочищению, отмечает исследование: в таких природных условиях даже при небольших выбросах вредные вещества могут накапливаться в атмосферном воздухе до высоких концентраций. Средняя концентрация взвешенных частиц — находящихся в воздухе мелких частиц пыли, золы, сажи, дыма, различных химических соединений — в атмосферном воздухе в городах азиатской части России, по данным НИИ «Атмосфера», было в 2007 году на 30% выше, чем в городах евро-

пейской части. Большинство ТЭЦ, работающих на угле, расположены на Урале в Свердловской и Челябинской областях, в регионах Сибири и Дальнего Востока — в Кемеровской, Пермской, Иркутской областях и Забайкальском крае из-за близости каменноугольных месторождений и низкого уровня прокладки газопроводов.

Список литературы:

- 1. Годовой отчёт открытого акционерного общества «Территориальная генерирующая компания №1» по результатам работы за 2014 год. [Электронный ресурс] <u>URL:</u> https://www.tgc1.ru/fileadmin/ir/Reports/Annual/2014/godovoi_otchet_tgk-1_2014_rus.pdf (дата обращения: 11.03.2022).
- 2. Власова И.В. Дышим полной грудью: что выбрасывают из труб теплоэлектростанции и котельные // Экология и право. -2015. -№ 59. C. 85-89; URL: https://bellona.ru/2015/11/18/boilers/
- 3. Ранжировка ТЭЦ Москвы по опасности, создаваемой для районов города. [Электронный ресурс] URL: http://www.iki.rssi.ru/ehips/Moscow/MoscowStep1.htm#_Toc27543083(дата обращения: 11.03.2022).
- 4. Мини-ТЭЦ: основные вопросссы и понятния. [Электронный ресурс] URL: https://esist.ru/info/mini-tets-osnovnye-voprosy-i-ponyatiya/#ID1 (дата обращения: 11.03.2022).
- 5. Соснина Е.Н., Маслеева О.В., Пачурин Г.В., Филатов Д.А. Экологическое воздействие мини-ТЭЦ с газопоршневыми и дизельными двигателями на окружающую среду // Фундаментальные исследования. − 2013. − № 6-1. − С. 76-80; URL: https://fundamental-research.ru/ru/article/view?id=31417 (дата обращения: 30.03.2022).