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Многие физические свойства ионных кристаллов зависят от электроста-

тических потенциалов. Такие потенциалы важны в оценке энергий связи 

и сжимаемости кристаллов [1]. Кроме того, предложенный Зейтцем [2] про-

стой метод вычисления энергетической зонной структуры ионных кристал-

лов, основан на использовании электростатических потенциалов. Знание ве-

личины электростатической энергии в приповерхностной области кристалла 

полезно для оценки стабильности структуры поверхности ионных кристал-

лов. Самой стабильной будет поверхность с наименьшей полной энергией, 

приходящейся, скажем, на пару поверхностных ионов. Вклад кулоновской со-

ставляющей в эту энергию должен быть преобладающим (до 90 %) [3]. 

Существуют различные способы вычисления объемных электростати-

ческих потенциалов. Остановимся на методе Эвальда [4]. В методе Эвальда 

электростатический потенциал: 
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где s – число атомов в выбранной элементарной ячейке решётки; ir  – радиус-

вектор i-того иона в элементарной ячейке; qi – его заряд. 

С помощью преобразования Эвальда [5] приводится к виду 
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Здесь Ω – объем элементарной ячейки; s – число ионов в элементарной 

ячейке. В первом слагаемом суммирование проводится по векторам прямой 

решётки, а в третьем слагаемом – по векторам обратной решётки. Второе сла-

гаемое представляет вклад от так называемого собственного потенциала (по-

тенциал от ионов той подрешётки, в которой находится рассматриваемый i-

тый ион). По определению, 
22

( ) t

x
erfc x dt




−=     . 

 Для расчёта слоевых потенциалов использовался метод Монхорста [6]. 



 

 

 

XII Всероссийская научно-практическая конференция  

молодых ученых «РОССИЯ МОЛОДАЯ» 

63704.2                                 21-24 апреля 2020 г. 

В этом методе кристалл (слэб) строится из слоев с некоторой образую-

щей плоскостью, выбираемой таким образом, чтобы дипольный момент соот-

ветствующей элементарной ячейки слоя, обладающей двумерной трансляци-

онной периодичностью, был параллелен плоскости слоя. Тогда кулоновская 

энергия слоя 
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где nq   – заряд иона, представима в виде 

321c EEEE ++= ;                                               (4) 
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Потенциал на месте иона с номером nτ равен 
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В формулах (5–8): А0 – площадь элементарной ячейки образующей кри-

сталлической плоскости; F2 и P – функции, зависящие от структуры слоя. Они 

описаны в [6]. nR   – радиус-вектор иона в элементарной ячейке слоя; Ẑ  – 

единичный вектор нормали к плоскости слоя; K2 – величина одного из векто-

ров обратной двумерной решётки слоя. 

На рис. 1 представлена кубическая элементарная ячейка кристаллов 

с решёткой флюорита (CaF2, Mg2Si). Примитивная ячейка образуется основ-

ными векторами 
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где а – постоянная решётки. Основные векторы обратной решётки и имеют 

вид 
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На рис. 1 представлена прямоугольная элементарная ячейка Mg2Si. На 

рис. 2 изображена прямоугольная ячейка Mg2Si, представляющая слэб из че-

тырёх слоёв, удовлетворяющих условию сходимости электростатического по-

тенциала (8) – отсутствие дипольного момента в направлении, перпендику-

лярном поверхности слоя c индексом Миллера (101) в исходной кристалличе-

ской решётке. 
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                           Рис. 1.                                                     Рис. 2. 
 

Основные трансляционные векторы (в системе координат, принятой на 

рисунке) следующие 
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В этой же системе координат в табл. 1 приведены координаты атомов 

в элементарной ячейке слоя. 

Таблица 1 

Координаты атомов элементарной ячейки слэба 

(в ед. постоянной решётки а) 
 

Атом Х΄ У΄ Z΄ 

1Si (Ca) 0 0 0 

2Si (Ca) 
2

4
 

1

2
 2

4
 

1Mg (F) 0 
1

4
 2

4
 

2Mg (F) 0 
1

4
 2

4
 

3Mg (F) 
2

4
 

3

4
 0 

4Mg (F) 0 
3

4
 2
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Расчёт объёмных электростатических потенциалов в объёмных Mg2Si 

и СaF2 проводился по методу Эвальда, а в слоях – по методу Монхорста. Для 

расчёта использовался комплекс программ, написанный на языке Фортран 

(автор – профессор Ю. И. Полыгалов). В табл. 2 приведены полученные в ре-

зультате расчёта по методу Эвальда объёмные электростатические потенциа-

лы, а в табл. 3 – слоевые электростатические потенциалы. 

Таблица 2 

Объёмные электростатические потенциалы на месте соответствующих ионов 

(в ед. е/a), где е – заряд электрона 
 

Атом Mg2Si Атом CaF2 

Si 15,1315 Ca -7,5658 

Mg -8,1414 F 4,0707 
 

Таблица 3 
 

Слоевые электростатические потенциалы на месте соответствующих 

ионов (в ед. е/а); Z – расстояние по нормали от поверхности слоя в объём 

кристалла; а – постоянная решетки 
 

Атом Mg2Si Атом СaF2 Z 

1Si 13,7757 1Ca -6,8878 
 

2

4
a  

 

2Si 15,2880 2Ca -7,6440 

1Mg -7,6180 1F 3,8090 

2Mg -8,1716 2F 4,0858 

1Si 13,1176 1Ca -7,5588  

 

2

2
a  

2Si 15,1332 2Ca -7,5665 

1Mg -8,1402 1F 4,0707 

2Mg -8,1415 2F 4,0707 

1Si 15,1315 1Ca -7,5658 
 

 

2a  

2Si 15,1315 2Ca -7,5658 

1Mg -8,1414 1F 4,0707 

2Mg -8,1414 2F 4,0707 
 

 Из табл. 2, 3 видно, что заметные изменения электростатических 

потенциалов имеют место в приповерхностном слое слэба толщиной порядка 

постоянной решетки (5–7 Å). Далее электростатические потенциалы сходятся 

к объёмным. 
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