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Обеспечение надежности сложных технических систем является 

актуальной задачей. Это относится и к линиям электропередачи, особенно 

воздушным, которые подвержены различным случайным внешним 

воздействиям. При решении возникающих задач для оценки надежности 

применяют методы теории вероятностей и математической статистики [1, 2]. 

В режиме нормальной эксплуатации [1] технической системы поток 

отказов можно считать простейшим. Тогда интервал времени между двумя 

соседними отказами имеет показательное распределение с постоянной 

интенсивностью потока отказов [1,2]. При построении моделей отказов 

сложных систем с последующим восстановлением удобно использовать 

вероятностную модель марковских процессов. Случайный процесс, 

протекающей в системе, называется марковским (процессом без 

последействия), если при фиксированном настоящей будущее не зависит от 

предыстории процесса. Этому требованию отвечают случайные процессы с 

постоянной интенсивностью. 

 Целью настоящей работы является построение марковской модели 

отказов воздушной линии электропередачи с двумя типами отказов.  

Для построения модели вводим следующие допущения: отказы 

статистически независимы; восстановленная система имеет те же 

характеристики, как и новая; интенсивность потока отказов и интенсивность 

потока восстановлений постоянны.  

Рассматриваемая система может находиться в трех состояниях:  

1) Основное нормальное рабочее состояние системы;  

2) Состояние отказа системы «повреждение опоры»; 

3) Состояние отказа системы «обрыв провода». 

Для наглядного описания работы системы используем граф состояний, 

на котором против каждой стрелки, ведущей из одного состояния в другое, 

указана интенсивность потока событий (отказов или восстановлений), 

переводящего систему по данной стрелке (рис.1). Здесь введены обозначения: 

𝑃0(𝑡) – вероятность того, что в момент времени 𝑡 система находится в 

нормальном состоянии; 𝑃1(𝑡)  - вероятность того, что в момент времени 𝑡 

система находится в состоянии отказа «повреждение опоры»; 𝑃2(𝑡)- 
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вероятность того, что в момент времени 𝑡 система находится в состоянии 

отказа «обрыв провода». Соответственно 𝛾𝑖   ( 𝑖 = 1, 2) - постоянные 

интенсивности потоков отказов (переходов системы из рабочего состояния в 

состояние отказов); 𝜇𝑖   ( 𝑖 = 1, 2) - постоянные интенсивности потоков 

восстановлений (переходов системы  из состояния отказов в рабочее 

состояние).  

 

                            
Рис.1. Модель восстанавливаемой системы. 

 

Для нахождения вероятностей состояний  𝑃𝑖(𝑡);    𝑖 = 0, 1, 2  составляем 

систему дифференциальных уравнений (уравнений Колмогорова) по правилу: 

«производная вероятности каждого состояния равна сумме всех потоков 

вероятности, идущих из других состояний в данное, минус сумма всех 

потоков вероятности, идущих из данного состояния в другие» [2]: 
𝑑𝑃0

𝑑𝑡
= −(𝛾1 + 𝛾2)𝑃0(𝑡) + 𝜇1𝑃1(𝑡) + 𝜇2𝑃2(𝑡), 

𝑑𝑃1

𝑑𝑡
= −𝛾1𝑃0(𝑡) − 𝜇1𝑃1(𝑡), 

𝑑𝑃2

𝑑𝑡
= −𝛾2𝑃0(𝑡) − 𝜇2𝑃2(𝑡). 

 

Начальные условия соответствуют тому, что в начальный момент 

система находится в нормальном состоянии:  𝑃0(0) = 1;     𝑃1(0) = 𝑃2(0) = 0.  
Решение полученной системы линейных дифференциальных уравнений 

находим методом преобразований Лапласа [3], заменяя искомые вероятности 

и их производные на соответствующие изображения, где 𝑠 − комплексная 

переменная: 

𝑃0(𝑡) → 𝑃0 (𝑠);             𝑃1(𝑡) → 𝑃1 (𝑠);                𝑃2(𝑡) → 𝑃2 (𝑠); 
 

𝑃0(𝑡) 

𝑃1(𝑡) 

𝑃2(𝑡) 

𝛾1(𝑡) 

𝜇1(𝑡) 

𝛾2(𝑡) 

𝜇2(𝑡) 
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𝑑𝑃0(𝑡)

𝑑𝑡
→ 𝑠𝑃0(𝑠) − 1;    

𝑑𝑃1(𝑡)

𝑑𝑡
→ 𝑠𝑃1(𝑠);    

𝑑𝑃2(𝑡)

𝑑𝑡
→ 𝑠𝑃2(𝑠). 

 

В результате имеем систему алгебраических уравнений относительно 

переменных  𝑃0 (𝑠);             𝑃1 (𝑠);                𝑃2 (𝑠): 
 

(𝑠 + 𝛾1 + 𝛾2)𝑃0(𝑠) − 𝜇1𝑃1(𝑠) − 𝜇2𝑃2(𝑠) = 1, 
−𝛾1𝑃0(𝑠) + (𝑠 + 𝜇1 )𝑃1(𝑠) = 0, 
−𝛾2𝑃0(𝑠) + (𝑠 + 𝜇2 )𝑃2(𝑠) = 0. 

 

Полученную систему уравнений решаем методом Крамера. Главный 

определитель системы уравнений выражается соотношением 

|

(𝑠 + 𝛾1 + 𝛾2) −𝜇1 −𝜇2

−𝛾1 (𝑠 + 𝜇1) 0

−𝛾2 0 𝑠 + 𝜇2

| = 

 

= 𝑠[𝑠2 + 𝑠(𝜇1 + 𝜇2 + 𝛾1 + 𝛾2) + (𝜇1𝜇2 + 𝛾1 𝜇2 + 𝛾2𝜇1)],  
 

корни которого имеют вид: 𝑠 = 0;  
 

 𝑠1 =
1

2
[−(𝜇1 + 𝜇2 + 𝛾1 + 𝛾2) +

  √(𝜇1 + 𝜇2 + 𝛾1 + 𝛾2)2 − 4(𝜇1𝜇2 + 𝛾1 𝜇2 + 𝛾2𝜇1] ; 

 

𝑠2 =
1

2
[−(𝜇1 + 𝜇2 + 𝛾1 + 𝛾2) −

  √(𝜇1 + 𝜇2 + 𝛾1 + 𝛾2)2 − 4(𝜇1𝜇2 + 𝛾1 𝜇2 + 𝛾2𝜇1]. 
 

 

C учетом того, что вспомогательный определитель для вероятности 

основного состояния системы равен 

 

|

1 −𝜇1 −𝜇2

0 (𝑠 + 𝜇1) 0 

0 0 𝑠 + 𝜇2

|, 

 

выражение для вероятности основного состояния в операторном виде 

представляется задается соотношением: 

 

𝑃0(𝑠) =
(𝑠+𝜇1)(𝑠+𝜇2)

𝑠(𝑠−𝑠1)(𝑠−𝑠2)
=

𝜇1

𝑠1
∙

𝜇2

𝑠2
∙

1

𝑠
+

(𝑠1+𝜇1 )(𝑠1 +𝜇2  )

𝑠1  (𝑠1−𝑠2)
∙

1

𝑠−𝑠1
−

(𝑠2+𝜇1 )(𝑠2 +𝜇2  )

𝑠2  (𝑠1−𝑠2)
∙

1

𝑠−𝑠2
 . 

 

Во временной области, после возвращения к оригиналам [3], 

вероятность основного состояния принимает вид 
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𝑃0(𝑠) =
𝜇1

𝑠1

𝜇2

𝑠2
+

(𝑠1+𝜇1 )(𝑠1 +𝜇2  )

𝑠1  (𝑠1−𝑠2)
𝑒𝑠1𝑡 −

(𝑠2+𝜇1 )(𝑠2 +𝜇2  )

𝑠2  (𝑠1−𝑠2)
𝑒𝑠2𝑡 ; 

 

𝑃0(𝑡) + 𝑃1(𝑡) + 𝑃2(𝑡) = 1. 

 

При условии 𝑡 → ∞ предельное (финальное) значение вероятности, 

называемое коэффициентом готовности, равно lim
𝑡→∞

𝑃0 (𝑡) =
𝜇1

𝑠1

𝜇2

𝑠2
. 

По данным, предоставленным Сетевой компанией, интенсивности 

потоков отказов и восстановлений системы значительно изменяются от 

месяца к месяцу. В данной работе сравниваются коэффициенты готовности 

системы в июле и марте. Для расчетов использованы интенсивности потоков 

отказов, представленные в таблице: 

 

Вид отказа июль март 

Повреждение опоры, 𝛾1
1

час
 0,0319 0,0042 

Восстановление опоры, 𝜇1
1

час
 0,0201 0,0799 

Обрыв провода,𝛾2
1

час
 0,0319 0,0069 

Восстановление провода, 𝜇2
1

час
 0,0301 0,0651 

 

В результате временная зависимость вероятности основного состояния 

системы (вероятность безотказной работы за месяц) определяется в июле 

соотношением   

𝑃0(𝑠) = 0,2762 + 0,3444𝑒−0,0249𝑡 + 0,3794𝑒−0,0894𝑡, 

а в марте соотношением 

𝑃0(𝑠) = 0,8630 + 0,1233𝑒−0,0701𝑡 + 0,0,0137𝑒−0,0860𝑡. 
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Рис.2. Временная зависимость надежности (вероятности основного состояния 

системы): 1- июль; 2- март. 

Полученные результаты графически представлены на рис.2, из которого 

видно, что финальное значение вероятности основного состояния в июле и 

марте существенно различаются и составляют  
𝜇1

𝑠1

𝜇2

𝑠2
= 0,2762 в июле  и 

𝜇1

𝑠1

𝜇2

𝑠2
= 0,8630 в марте  и достигается примерно через 150 часов работы 

системы. Сезонное различие в надежности системы показывает, что в летние 

месяцы необходимы дополнительные меры для ее обеспечения.  
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