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Рассмотрим задачу вытеснения одной фазы другими в полукубическом 

пространстве, который можно рассмотреть, как некоторый полуоткрытый          

параллелепипед находящийся в подземных пористых средах. Предполагается 

что, начальное давление в пласте всюду постоянно и в начальный момент 

времени в среде находится только один тип флюида. Если с начального мо-

мента времени в пласт закачивается сжимаемый тип флюида, то в среде обра-

зуется двухфазная зона с неизвестными подвижными границами между этими 

фазами. Считается что зона смеси отсутствует, то есть происходит поршневое 

вытеснение, среда однородная, пористость постоянная, закачиваемая фаза 

идеальная, вторая фаза несжимаема. Математическая постановка этой задачи 

в условиях одномерности формулируется так: 

Необходимо найти непрерывную функцию 

𝑢𝑖(𝑥, 𝑡) и 𝑙(𝑡) из следующей  дифференциально краевой задачи: 

𝜕

𝜕𝑥
(

𝑘𝑖ℎ𝑏

µ𝑖
𝜑(𝑢, 𝛽)

𝜕𝑢𝑖

𝜕𝑥
) = 𝑚(𝑥, 𝑡)

𝜕𝑢𝑖

𝜕𝑡
,    𝑥 ∊ 𝐷𝑖 ,   𝑡 > 0, 

начальное условие  𝑈(𝑥, 0) = 𝑈0(𝑥), 

краевое условие 
𝑘1ℎ𝑏

µ1
𝜑(𝑢, 𝛽)

𝜕𝑢1

𝜕𝑥
|𝑥=𝑥0

= 𝑞0(𝑡), 

    𝑢2(𝑥, 𝑡)|𝑥→∞ = 𝑢0(𝑥), 

а так же условия на подвижной границе раздела      𝑥 = 𝑙(𝑡) 

    𝑢1(𝑥, 𝑡)|𝑥=𝑙(𝑡)−0 = 𝑢2(𝑥, 𝑡)|𝑥=𝑙(𝑡)+0, 

𝑘1

𝜇1

𝜕𝑢1

𝜕𝑥
|𝑥=𝑙(𝑡)−0 =

𝑘2

𝜇2

𝜕𝑢2

𝜕𝑥
|𝑥=𝑙(𝑡)+0, 

𝑚𝛿
𝑑𝑙

𝑑𝑡
= −

𝑘2

𝜇2

𝜕𝑢2

𝜕𝑥
|𝑥=𝑙(𝑡)+0, 𝑙(0) = 0, 

Здесь 𝐷1 = {𝑥;  𝑥0 ≤ 𝑥 ≤ 𝑙(𝑡)}, 𝐷2 = {𝑥; 𝑙(𝑡) < 𝑥 < ∞},  𝑖 = 1,2 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝑘𝑖 , ℎ, 𝑏, µ𝑖 , 𝑚, 𝛿  параметры среды и флюида [1-3].𝜑(𝑢, 𝛽)–функция харак-

теризующие структурированности среды и флюидов ньютоновских и ненью-

тоновских сред [1,2]. 

Для построения решения задачи (1) – (7), предположим, что эти парамет-

ры в своей области определений постоянны или сохраняют переменности в 

определенных диапазонах и заранее заданы. 

Вводя новые замены переменных 𝑢𝑖 = 𝑢̅𝑖 ∙ 𝑢0,   𝑥 = 𝑥̅ ∙ 𝐿 ,   𝑡 = 𝑡̅ ∙
𝐿2

𝑑
,   

ɋ0 = ɋ0̅̅ ̅ ∙ 𝑘𝑏 ∙
𝑢0

µ
, 𝑙(t) = 𝑙(̅𝑡) ∙ 𝐿, 𝜑(𝑢, 𝛽) = 𝜑̅(𝑢̅, 𝛽̅) ∙ æ, 

придем к следующей упрощенной задаче. 

   æ𝑖
∂2𝑢𝑖

𝜕𝑥2
=

𝜕𝑢𝑖

𝜕𝑡
,    𝑥 ∈ 𝐷, 

с начальными 

 𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 𝑢0, 

краевыми  

   
𝜕𝑢1

𝜕𝑥
|𝑥=0 = 𝑐0𝑞0(𝑡), 𝑢2(𝑥, 𝑡)|𝑥→∞ → 𝑢0(𝑥), 

 

а также условиями на подвижной границе   𝑥 = 𝑙(𝑡) 

  𝑢1(𝑥, 𝑡)  |𝑥=𝑙−0 = 𝑢2(𝑥, 𝑡)|𝑥=𝑙−0. 

  𝑘1
𝜕𝑢1

𝜕𝑥
|𝑥=𝑙−0 = 𝑘2

𝜕𝑢2

𝜕𝑥
|𝑥=𝑙+0, 

  
𝑑𝑙

𝑑𝑡
= −𝑘2

𝜕𝑢2

𝜕𝑥
|𝑥=𝑙+0, 𝑙(0) = 0. 

 

 Здесь коэффициенты k1, k2, æ𝑖, 𝑐0  содержат в себе  квази-

линеаризованные параметры задачи (1) - (7) ориентированной на возможно-

сти построения решения задач. 

В работе [1-3] для уравнения (1) при 𝑖 = 1, путем введения переменной 

𝛏=𝛏(x,t) показаны условия при которых уравнения в частных производных 

второго порядка переходит к обыкновенному дифференциальному уравнению 

второго порядка, при ξ = 𝑥 ∙ 𝑡−
1

2. 

 Пусть ξ =
𝑥

√𝑡
 ., 𝑙(𝑡) = 𝛼√æ𝑡, ɋ0(𝑡) = 𝑞 ∙ 𝑡−

1

2/𝑐0 , 

(9) 

(10) 

(11) 

(12) 

(13) 

(8) 
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Подставляя их в задачи(8)-(13), получим  

   
𝑑2𝑢1

𝑑ξ2
+

ξ

2

𝑑𝑢1

𝑑ξ
= 0, 0 ≤ ξ ≤ ξ̅ , 

   
𝑑2𝑢2

𝑑ξ2
+

𝑎2ξ

2

𝑑𝑢2

𝑑ξ
= 0,ξ̅ ≤ ξ < ∞ , 

при этом условии (9) примет вид 

     𝑢|ξ→∞ = 1, 

условия (10) на краях 

    
𝑑𝑢1

𝑑ξ
|ξ=0 = 𝑞, 𝑢2|ξ→∞ → 1, 

и на границе раздела ξ̅ = 𝛼√æ , 

    𝑢1(ξ)|ξ=ξ̅−0 = 𝑢2(ξ)|ξ=ξ̅+0  , 

 

𝑑𝑢1

𝑑ξ
|ξ=ξ̅−0 = 𝐶̃

𝑑𝑢2

𝑑ξ
|ξ=ξ̅+0;

𝑑𝑢2

𝑑ξ
|ξ=ξ̅+0 = −

𝑚𝛼√æ

2𝐶̃
 

 

Решение уравнения (15) имеет вид 

   𝑢2(ξ) = 𝑐1𝝋(ξ)     + 𝑐2. 

 Коэффициенты C1 и C2 постоянные определяемые из граничных условий. 

𝝋(ξ) =
2

𝑎√π
∫ ℓ−𝜃2ξ

0
𝑑ξ – интеграл вероятности, табулированная функция 

[4]. 

Из (17)  и (20) находим 

    𝑐1
2

𝑎√π
∙  

√π

2
+ 𝑐2 = 1, 

а из (19) и (20) 

𝑑𝑢2

𝑑ξ
|ξ=ξ̅ = 𝑐1

2

𝑎√π
ℓ−𝛼2æ = −

𝛼√æ

2𝐶̃
 . 

Значит    

   𝑐1 = −
𝑎√π𝛼√æ

4с̃ ℓ−𝑎2æ
  и 𝑐2 = 1 +

𝑎√π𝛼√æ

4с̃ ℓ−𝑎2æ
. 

Тогда (20) примет вид 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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   𝑢2(ξ) = 1 +
𝑎√π𝛼√æ

4с̃ ℓ−𝑎2æ
[1 − аφ(ξ)].   

Учитывая (18) имеем 

   𝑢1(ξ) = 1 +
𝑎√π𝛼√æ

4с̃ ℓ−𝑎2æ
[1 − а𝜑(ξ̅)]. 

Из (21) и (19) получим 

   
𝑑𝑢1

𝑑ξ
|ξ=ξ̃ =

−𝑐α√æ

2𝐶
= −

αmæ√æ𝑘2

2𝑘2𝑢0
 

для уравнения (14) краевые условия (22). Решение уравнения (9) предста-

вим в виде 

   𝑢1(ξ) = 𝑏1 ∫ ℓ−
ξ2

4
ξ

0
  𝑑ξ + 𝑏2  , 

где b1 и b2 определяется из краевых условий (17), в результате чего имеем 

   𝑏1 = 𝑞, 

Тогда (19) запишется так: 

   𝑢1(ξ) = 𝑞 ∫ ℓ−
ξ2

4
ξ

0
𝑑ξ + 𝑏2. 

Так как на границе раздела известно 𝑢1(ξ̅), то найдем константу b2
 

   𝑞 ∫ ℓ−
ξ2

4
ξ̅

0
𝑑ξ + 𝑏2, = 1 +

𝛼√æ√π

4с̃  ℓ−𝑎2æ
[1 − а𝜑(ξ̅)]. 

Отсюда значение b2 подставим в (25) и получим 

𝑢1(ξ) = 𝑞 ∫ ℓ−
ξ2

4

ξ

0

𝑑ξ +
𝛼√æπ

4с̃  ℓ−𝑎2æ
[1 − аф(ξ̅)]. −𝑞 ∫ ℓ−

ɳ2

4

𝛼√æ

0

𝑑ɳ + 1. 

 

 

Дифференцируя (24) с учетом b1=q, а также при ξ = ξ̅ =  𝛼√æ, 

получим    
𝑑𝑢1

𝑑ξ
|ξ=ξ̅ = 𝑞 ∙ ℓ−

𝑎2æ

4 . 

С учетом (23), (26) получим трансцендентное уравнение относительно па-

раметра α. 

    −
𝑐𝛼√æ

2с̃
= 𝑞ℓ−

𝑎2æ

4 , 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Или 

    𝛼 = 𝑔 ∙ ℓ−
𝑎2æ

4 , 

    𝑔 = −
2с̃𝑞

𝑐√æ
   . 

Область искомого корня есть (0; 𝑔). Отсюда решая трансцендентное урав-

нение (27) находим параметр α после этого можно найти 𝑢1(ξ) от 0 до 𝑙, а в 

зоне от 𝑙 до ∞ определяется 𝑢2(ξ). Трансцендентное уравнение (27) можно 

решить итерационными методами, например методом  Вегстейна [5-7]. В ка-

честве начального приближения берется α0=0, 

а так же для значений  μ2 = 0,013 спз,   𝑏 = 100м, 𝑚 = 0,22, 

   𝐶0 = 0,20, æ = 102м2/сек,    𝑘1 = 0,7дарси, 

   μ𝑏 = 1сп3,   𝑘2 = 1дарси.  , 𝑞 = 3 ∙
105м3

сут
, 𝑢0 = 100кг/см2 

проведен численный расчет,  результат его приведен на рисунке 

 

         
𝑢

𝑢0
= 𝑢∗  

 

              | 

     | 

     | 

     | 

     | 

     | 

  1    | 

  0 

 

 

 

 

 

ξ 

(27) 

ξ̅ 
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