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Одним из наиболее развитых и информативных методов моделирования 

является метод конечных элементов (МКЭ). Этот метод основан на интегра-

ции системы дифференциальных уравнений механики деформации с учетом 

принятой твердотельной модели. 

Программный компьютерный комплекс ANSYS, основанный на методе 

МКЭ, позволяет рассчитать параметры деформации поверхностного слоя де-

тали, определить долговечность, оценить прочность и эффективность обра-

ботки [1-2]. 

В. М. Смелянский разработал механическую теорию процесса поверх-

ностного пластического деформирования (ППД). Было проведено моделиро-

вание напряженного деформированного состояния очага деформации (ОД) и 

закономерности формирования поверхностного слоя (ПС). Таким образом, 

при обработке ППД образуется ОД, форма и размеры которого зависят от 

технологических факторов [3]. Движение металла  осуществляется по линии 

тока, которая берется на определенной глубине, и определяется решением за-

дач механики.  

МКЭ моделирование проводилось в плоско-деформационной постанов-

ке. В соответствии с ней была создана конечно-элементная модель, состоящая 

из обрабатываемой детали и индентора. При построении геометрической мо-

дели было решено использовать двумерную идеализацию рассматриваемого 

объекта.  Модель соответствовала геометрическим размерам фактической 

контактной пары. Постановка задачи показана на рисунке. 2. 

 
Рис. 2. Постановка задачи моделирования процесса обработки ППД 
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В процессе постановки задачи моделирования МКЭ было выявлено, что 

напряжения в поверхностном слое распределяются неравномерно, растягива-

ющие напряжения осевого компонента σx составляют 400-500 МПа (рис. 1). 

 

 
Рисунок 1 – Распределение напряжений осевого компонента 𝜎𝑥 на 750 шаге 

моделирования 

 

Основная идея моделирования заключалась в том, что часть АВ смоде-

лированного фрагмента устроена таким образом,  что она не попадает в про-

странство ОД на первом шаге нагружения. В то же время это сечение уже по-

кинуло пространство ОД на предпоследнем шаге нагружения (рис. 2) [4]. 

Если рассматривать плоскость основных деформаций, то движение ОД 

в сторону подачи будет дискретным: новый ОД появляется при смещении от-

носительно предыдущего на величину подачи, которая обычно составляет 

0,05-0,3 мм/об. 

В исходном положении индентер находится на определенном расстоя-

нии от поверхности образца. 

На первом и каждом последующем нечетном шаге моделирования, вы-

полнялось нагружение – индентор перемещался на 0,5 мм к поверхности, что 

подразумевает внедрение и создание натяга заданного при моделировании. 

Разгрузка выполнялась во втором и каждом последующем четном шаге 

– индентор отводился с поверхности на начальное расстояние при перемеще-

нии на 0,1 мм вдоль поверхности. 

При моделировании всех 750 шагов поперечное сечение AB проходит 

через ОД. Это сечение становится разделом глубины обработанного поверх-

ностного слоя, в котором происходит накопление деформаций, частичное ис-

черпание пластичности и образование тензора остаточных напряжений с уче-

том изменяющихся свойств поверхностного слоя. 
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Рисунок 2 – Расположение выбранных сечений  

 

После решения задачи МКЭ  для всех 750 шагов были записаны коор-

динаты узла, векторные компоненты смещения узла, компоненты тензора 

напряжения, компоненты тензора упругих, пластических и общих деформа-

ций. 

На рис. 3 представлен профиль очага деформации, восстановленный по 

циклам нагружения и разгрузки.  Из рисунка можно заметить, что, на кото-

рую распространилась пластическая волна составляет примерно 0,04 мм при 

теоретически заданном действительном натяге Hд = 0,05 мм по шагам нагру-

жения и 0,042 по шагам разгрузки. Высота пластической волны составила 

примерно 0,16 мм по циклам нагружения и разгрузки, это говорит о том, что 

удалось добиться стационарности очага деформации.  

 
 

Рисунок 3 – Профиль очага деформации, восстановленный  

по циклам нагружения и разгрузки 

 

На рис. 4 представлены результаты распределения компонент тензора 

остаточных напряжений по глубине ПС после 750 шага моделирования. На 

данном графике значение сжимающих остаточных напряжений осевого ком-

понента σx составляет примерно 450 МПа, при этом экстремум располагается 

на поверхности детали. Радиальные остаточные напряжения σy составляют 
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примерно 50 МПа. Тангенциальные остаточные напряжения σz составляют 

200 МПа. Касательные напряжения σxy составляют примерно 50 МПа. 

Глубина распространения сжимающих остаточных напряжений состав-

ляет примерно 2 мм при общей глубине распространения существенных по 

величине напряжений 4-6 мм.  

 

 
 

Рисунок 5 – Распределение компонент тензора остаточных напряжений  

по глубине поверхностного слоя после 750-го шага моделирования: 

σx – осевая составляющая ОН, σy – радиальные, σz – тангенциальные ОН,  

σxy – касательные напряжения 

 

Проанализировав полученные данные можно сделать следующие вы-

вод, что максимальные напряжения наблюдаются в износостойком покрытии, 

а минимальные напряжения наблюдаются на поверхности детали. Также 

определено, что износостойкое  покрытие выдерживает наибольшую нагрузку 

благодаря своим механическим свойствам из-за этого оно менее подвержено 

разрушению, в отличие от основной детали, это позволяет сделать вывод о 

том, что, при переходе от одного шага к другому происходит упрочнение ма-

териала, которое сопровождается интенсивными процессами деформаций в 

поверхностном слое.  

Исследование выполнено при финансовой поддержке РФФИ в рамках 

научного проекта № 20-08-00587» 
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