

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.1 21-24 апреля 2020 г.

ОСОБЕННОСТИ РАЗРАБОТКИ СЛОЖНОГО ИНТЕРФЕЙСА НА

ASP.NET MVC

Сорокина С.В., студентка гр. ИТб-161, IV курс

Научный руководитель: Сахопотинов Г. А., ассистент

Кузбасский государственный технический университет имени Т.Ф. Горбачева,

г. Кемерово

Прежде чем погрузиться в тему данной статьи вкратце рассмотрим

основные положения ASP.NET для того чтобы понимать в дальнейшем суть

проблемы и варианты ее решений.

Платформа ASP.NET MVC представляет собой фреймворк для создания

сайтов и веб-приложений с помощью реализации паттерна MVC. Сам паттерн

MVC предполагает разделение приложения на три компонента:

• Модель (model) представляет класс, описывающий логику

используемых данных.

• Контроллер (controller) представляет класс, обеспечивающий связь

между пользователем и системой, представлением и хранилищем

данных.

• Представление (view) - это собственно визуальная часть или

пользовательский интерфейс приложения, использующий модель для

вывода некоторых данных. Как правило, html-страница, которую

пользователь видит, зайдя на сайт. В ASP.NET оно реализовано с

помощью движка представлений Razor. Razor — это синтаксис

разметки для внедрения в веб-страницы серверного кода, он

позволяет сделать переход от разметки html к коду C#.

Моя дипломная работа представляет собой веб-сайт, созданный с

помощью фреймворка ASP.NET и паттерна MVC. Проект разработан для

сервисного отдела АО «СУЭК-Кузбасс», который содержит в себе функции

учета и создания графика дежурств, функции рассылки графика по почте и

создания отчета о дежурствах, а также списки сотрудников и аварий, на

которые они выезжали. По большей части это были несложные страницы с

простым списком сотрудников или аварий. Но на главной странице сайта

заказчик требовал представить график дежурств отдела в виде календаря на

месяц, в каждой ячейке которого должно было находиться скрытое поле. Поле

открывается нажатием на число, и там в выпадающем списке можно выбрать

дежурного на данный день и после сохранения изменений его имя остается в

данной ячейке. Таким образом, каждый сотрудник может зайти на сайт и

увидеть, когда он дежурит, и кто дежурит в другие дни. Соответственно,

основной алгоритм построения календаря находится в представлении и

реализован с помощью движка Razor.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.2 21-24 апреля 2020 г.

Однако, спустя какое-то время заказчик также пожелал сделать еще и

график отпусков, с подобным интерфейсом - в виде календаря.

Таким образом, передо мной встала проблема, как разработать календарь

максимально лаконичным и понятным образом, если заказчику в будущем

захочется самому что-то добавить или переделать? И как избежать повторения

одного и того же кода?

Первоначально для решения проблемы на ум сразу же приходит решение

- создать два представления календаря, для графика дежурств и для графиков

отпусков, отличающихся лишь в деталях. Однако, такой способ хоть и не

требует дополнительного анализа технологии разработки, но имеет два

существенных минуса. Во-первых, это довольно банальное копирование кода,

что совершенно не подходит под решение заявленной проблемы. Во-вторых,

если придется редактировать календарь или добавлять в него дополнительный

функционал, то работу придется проводить в дважды, что не исключает

человеческий фактор. В результате, можно сделать вывод что такой способ не

годится.

Таким образом, я начала усердные поиски другого более гибкого

решения и выяснила, что фреймворк ASP.NET MVC обладает также таким

мощным инструментом, как HTML-хелперы, позволяющие генерировать html-

код и вызывать их как обычную функцию. Существует два вида таких

хелперов. Рассмотрим каждый из них.

Строчный хелпер. Строчные хелперы представляют собой обычное

представление, а это, как мы уже знаем, «симбиоз» html и С#. Но

отличительная особенность их в том, что они начинаются с тега @helper и

работают подобно методам, т.е. их можно вызвать в нужном представлении и

передать туда некоторые аргументы.

Пример:

@helper BookList(IEnumerable<BookStore.Models.Book> books)

{

 @foreach (BookStore.Models.Book b in books)

 {

 @b.Name

 }

}

Листинг 1. Пример строчного хелпера.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.3 21-24 апреля 2020 г.

Хелпер в виде C# класса. В таком классе не имеется html разметки. Вся

разметка создаются с помощью объекта TagBuilder, который имеет ряд свойств

и методов, задающих значения для html-тегов:

• Свойство InnerHtml позволяет установить или получить содержимое

тега в виде строки.

• Метод MergeAttribute (string, string, bool) позволяет добавить к

элементу один атрибут. Для получения всех атрибутов можно

использовать коллекцию Attributes.

• Метод SetInnerText(string) устанавливает текстовое содержимое

внутри элемента.

• Метод AddCssClass(string) добавляет класс css к элементу.

Пример:

public static class ListHelper

 {

 public static MvcHtmlString CreateList(this HtmlHelper html, string[]

items)

 {

 TagBuilder ul = new TagBuilder("ul");

 foreach (string item in items)

 {

 TagBuilder li = new TagBuilder("li");

 li.SetInnerText(item);

 ul.InnerHtml += li.ToString();

 }

 return new MvcHtmlString(ul.ToString());

 }

 }

Листинг 2. Пример хелпера в виде C# класса.

В своем проекте я протестировала оба вида хелперов. Каждый удобен

тем, что их можно вызвать в любом представлении и в любом месте, однако я

также выявила ряд недостатков:

• Оба типа хелперов не создаются в одном каталоге с

представлениями, их обязательно необходимо помещать в каталог

в корне проекта - App_Code.

• Оба типа хелперов не имеют поддержки специальных встроенных

хелперов (чаще всего они создают простую часто используемую

разметку, например, ссылки), т.к. каталог, в котором они

содержатся, предназначен для динамически собираемого кода.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.4 21-24 апреля 2020 г.

• Хелпер в виде C# класса из-за значительного количества объектов

TagBuilder и его методов, даже для небольшой разметки, для

разметки, в которой необходимо представить целый календарь,

получается практически невозможным для составления и

чрезвычайно обширным и, соответственно, плохо читаемым и

менее понятным.

Исходя из изученных и проанализированных мною способов календарь

графика дежурств и отпусков я построила в виде строчного хелпера. Он

подошел мне в наибольшей степени, по нескольким причинам. Во - первых,

прежде у меня уже была написана разметка календаря, и мне не пришлось

менять ее полностью. Во - вторых, теперь обе страницы с календарями

вызывают один и тот же метод который выдаёт им разметку, и если у меня или

у заказчика в дальнейшем возникнет необходимость редактировать

функционал календаря – это не нужно будет делать в нескольких местах, но

при этом изменения будут распространяться на оба календаря. Также, это

будет очень полезно при создании других календарей.

Однако, если представление для календарей всего одно, а хелпер и

является представлением, то оно должно работать с конкретной моделью.

Тогда каким образом удается работать в одном календаре с дежурстве, а в

другом с отпусками? Действительно, в моём проекте имеются модели

дежурств и отпусков, но хелпер принимает в себя третью модель – модель

«Calendar».

Рис. 1. Диаграмма классов моделей.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.5 21-24 апреля 2020 г.

Тут на помощь приходит контроллер, его обязанность заключается в том,

чтобы выбрать данные из дежурств и отпусков, и в зависимости от вызываемой

страницы сайта, создавать модель календаря с теми или иными данными.

Таким образом, при вызове страницы графика дежурств, контроллер выбирает

данные из модели «DutyList» и записывает в экземпляр модели «Calendar» в

поле Duties, представляющее из себя массив пар дат и дежурных сотрудников.

Затем контроллер цельно передает модель календаря в представление.

Аналогично происходит и при вызове страницы сайта отпусков.

Соответственно, два разных календаря реализуются одним и тем же

методом, но за счёт передаваемых данных имеют разный вид:

Рис. 2. Календарь графика дежурств.

Рис. 3. Календарь отпусков.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21125.6 21-24 апреля 2020 г.

В заключении хочу уточнить, что хоть метод для решения заявленной

проблемы и был найден, он, так или иначе, имеет свои недостатки. И я могу

лишь надеяться, что компания Microsoft в выпуске новых версий фреймворка

обратит на это внимание и устранит эти недостатки.

Список литературы:

1. Основы ASP.NET [Электронный ресурс] URL:

https://professorweb.ru/my/ASP_NET/base/level1/base_aspnet_index.php

(дата обращения 13.02.2020).

2. Руководство по ASP.NET MVC 5 [Электронный ресурс] URL:

https://metanit.com/sharp/mvc5/ (дата обращения 12.02.2020).

3. Введение в Тэг-хелперы (Tag Helpers) [Электронный ресурс] URL:

https://dotnet.today/ru/aspnet5-vnext/mvc/views/tag-helpers/intro.html (дата

обращения 13.02.2020).

https://professorweb.ru/my/ASP_NET/base/level1/base_aspnet_index.php
https://metanit.com/sharp/mvc5/
https://dotnet.today/ru/aspnet5-vnext/mvc/views/tag-helpers/intro.html

