

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.1 21-24 апреля 2020 г.

РАЗРАБОТКА ПРИНЦИПОВ ПОСТРОЕНИЯ СИСТЕМ ХРАНЕ-

НИЯ КОНФИДЕНЦИАЛЬНОЙ ИНФОРМАЦИИ ДЛЯ ЛИЧНОГО И

КОРПОРАТИВНОГО ИСПОЛЬЗВАНИЯ

Некрасов Е.П., студент гр. ИТм-181, II курс

Научный руководитель: Ванеев О.Н., к.т.н., доцент

Кузбасский государственный технический университет

имени Т.Ф. Горбачева

г. Кемерово

В современном мире социальных сетей, разнообразных тематических

форумов и ресурсов, вопрос о том, как безопасно хранить пароли, является

достаточно актуальным. Для того, чтобы создать максимально безопасный

пароль для каждого важного ресурса, потребуется немного времени и фанта-

зии, однако запомнить такое количество безопасных паролей человеку будет

достаточно сложно, если только он не обладает супер способностями своей

памяти. Выхода может быть два - или не заморачиваться с безопасностью,

используя по старинке один пароль для всех сайтов, состоявший из названия

своего имени и дня рождения, или прибегнуть к помощи специального про-

граммного обеспечения.

Менеджер паролей — это программа, которая шифрует и хранит ваши

пароли в надёжном месте. Два в одном: безопасные пароли, которыми удобно

пользоваться. Остаётся запомнить единственный пароль — к самому мене-

джеру. Проведя детальный анализ существующих прототипов менеджеров

паролей было выявлено следующее:

• Сохранение конфиденциальной информации — это важная и ак-

туальная проблема;

• Большинство менеджеров паролей направлены исключительно

хранению паролей, однако остальная конфиденциальная инфор-

мация не затрагивается;

• Очень мало менеджеров паролей, которые использовали бы

принцип 2fa двухфакторная аутентификация, которая стала свое-

го рода стандартом в мире защиты данных;

• Локальные менеджеры паролей не подходят для корпоративного

использования, так как представляют собой один файл, пользо-

ваться которым может единственный человек, или файл на серве-

ре, который чаще всего совсем не защищен от хищения

• Облачные же требуют дополнительного программного обеспече-

ния

• Некоторые из менеджеров паролей имеют старый и уж очень не-

дружелюбный интерфейс;

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.2 21-24 апреля 2020 г.

На основе данных недостатков можно сформулировать задачу - разра-

ботать систему, которая хранит конфиденциальную информацию в надежном

формате и имеет ряд особенностей:

• Позволяет хранить в себе не только пароли, но и различные текст,

мелкие файлы;

• Не требует дополнительного ПО;

• Бесплатный;

• Подходит для корпоративного использования;

• Наличие двухфакторной авторизации;

• Простой и понятный интерфейс;

• Открытый исходный код;

• Синхронизация с большим количеством устройств;

Из данных особенностей можно сформировать диаграмму требований к

системе. Она показана на рисунке 1

Рисунок 1 – Диаграмма вариантов использования к системе

Перед переходом к реализаии требуется провести анализ технологий, в

первую очередь определиться с алгоритмом шифрования от которого будет

зависеть эффективность системы.

Следующий этап — это подбор алгоритма шифрования, в .NET

Framework классы реализуют несколько симметричных и асимметричных ал-

горитмов. Симметричные алгоритмы работают быстро в обоих направлениях,

однако они имеют ряд проблем, связанные с ними:

• Необходим безопасный способ передачи ключа.

• Периодически нужно менять ключи.

• Ключ должен храниться в безопасном месте.

Асимметричные алгоритмы пытаются решить проблемы, присущие

симметричным алгоритмам. Они основаны на математических методах, кото-

рые требуют разных ключей для шифрования и расшифровки. RSA поддер-

живает прямое шифрование и расшифровку значений. Большой проблемой

асимметричных алгоритмов является то, что они работают намного медлен-

нее (в зависимости от шифруемых данных) симметричных. Технологии, по-

добные SSL, используют асимметричные алгоритмы в начале, при установле-

нии сеанса связи. На начальных шагах обмена трафик между клиентом и сер-

https://professorweb.ru/my/ASP_NET/security/level1/1_3.php

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.3 21-24 апреля 2020 г.

вером защищается асимметричным шифрованием. На данном этапе клиент и

сервер могут безопасно обменяться симметричным ключом. Это позволяет

объединить преимущества симметричного и асимметричного шифрования.

Для достижения максимальной «защиты» данных пользователя следует

обратиться к системе двухфакторной аутентификации — это метод иденти-

фикации пользователя в каком-либо сервисе (как правило, в Интернете) при

помощи запроса аутентификационных данных двух разных типов, что обес-

печивает двухслойную, а значит, более эффективную защиту аккаунта от не-

санкционированного проникновения. Впрочем, двухфакторная защита не

означает что аккаунт невозможно будет украсть, однако она значительно

усложняет процесс кражи данных, так как даже если пароль был скомпроме-

тирован, злоумышленнику придется или раздобыть мобильник жертвы.

В рамках данной системы для реализации будет использоваться биб-

лиотека .Net - TwoFactorAuth.Net, которая доступна в виде пакета NuGet. Ис-

пользуется для двухфакторной (или многофакторной) аутентификации с ис-

пользованием TOTP и QR-кодов

Определившись с механизмом сохранения и хранения данных можно

приступить к выбору платформы которая способна удовлетворить все требо-

вания. Так как передо мной стоит задача разработки приложения, которое в

первую очередь направлено на сохранность персональных данных пользова-

телей, было принято решение свести к минимуму централизованное хранение

данных. Наиболее привлекательный вариант — это хранение конфиденци-

альной информации непосредственно на компьютере пользователей, однако в

максимально недоступном виде. Исходя из всего вышесказанного необходи-

ма и достаточна разработка классического настольного приложения. На дан-

ный момент Windows представляет три основные платформы приложений

каждая из которых имеет свои преимущества и недостатки.

• Универсальная платформа Windows (UWP)

• WPF (.NET);

• Windows Forms (.NET);

Windows Forms — это исходная платформа для управляемых приложе-

ний для Windows на основе упрощенной модели пользовательского интер-

фейса с доступом ко всем компонентам платформы .NET Core или полной

платформы .NET Framework. Однако любое современное приложение обязано

иметь приветливый и интуитивно понятный интерфейс чего обеспечить Win-

dows Forms не может.

UWP — это передовая платформа для приложений и игр, предназна-

ченных для Windows 10. Это платформа с широкими возможностями

настройки, которая использует разметку XAML для отделения пользователь-

ского интерфейса (представления) от кода (бизнес-логики). Хотя UWP и яв-

ляется на данный момент новейшей, платформой приложений распростра-

ненность Windows 10 в соотношении с другими платформами оставляет же-

лать лучшего, а разрабатываемое приложение направлено на широкую ауди-

торию пользователей.

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.4 21-24 апреля 2020 г.

WPF — это общепризнанная платформа для управляемых приложений

для Windows с доступом ко всем компонентам платформы .NET Core или

полной платформы .NET Framework. Она также использует разметку XAML

для отделения пользовательского интерфейса от кода. Эта платформа создана

для классических приложений, для которых требуется расширенный пользо-

вательский интерфейс, настройка стилей и сценарии с большим объемом гра-

фики. Плюсом также является и то что переход с WPF на UWP достаточно

безболезнен, так что в случае необходимости есть возможность перенапра-

вить приложение под систему Windows 10.

Сам принцип разработки WPF приложений особо ничем не отличается

от обычных Windows Forms, мы просто получаем больше возможностей по

созданию форм благодаря XAML. Данные попадают на форму благодаря

привязкам, то есть перед тем как попасть на форму, в одном классе, а то и в

одном методе проходит получение, подготовка и распределение данных по

форме, что существенно осложняет не только доработку приложения, но и

страдает быстродействие всей системы.

Поэтому было принято решение разработки основываясь на не так дав-

но появившемся паттерне MVVM, который разделяет приложение на три

компоненты: модель, представление, бизнес-логика(модель-представление).

Прослеживается некоторая аналогия паттерну MVC однако в данном случае

ни модель, ни представление ни сам компонент бизнес-логики не знают друг

о друге. Грубо говоря View знает только то что во ViewModel может быть не-

кое тектовое свойство которое её следует брать для элемента формы. Други-

ми словами, наш интерфейс не как не зависит от кода, что позволяет к приме-

ру, разрабатывать двумя разными командами интерфейс и код по отдельно-

сти, либо изменить интерфейс убрав из него не нужные элементы (не трогая

при этом код). В этом и суть разделения всего по слоям.

Перед тем как рассматривать на конкретном примере, нужно провести

подготовку приложения. Следует внести отдельный класс который будет от-

вечать за связь между View и ViewModel, например BaseModelView. Он пред-

ставлен на рисунке 2

Рисунок 2 – Листинг метода связки свойств между View и ViewModel

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.5 21-24 апреля 2020 г.

В данном классе следует обратить внимание на интерфейс

INotifyPropertyChanged, введенный в .NET Framework начиная с версии 2 и

выше. Этот интерфейс реализует систему уведомлений, которая активирует-

ся, когда значение свойства изменяется. Это требуется в модели-

представления, чтобы сделать механизм привязки пользовательского интер-

фейса XAML динамическим. Другими словами, View узнает о свойстве

ViewModel в тот момент, когда получает уведомление об изменении этого

свойства. Так, как наша View должна быть независима от ViewModel мы не

можем просто так использовать Click и другие события. Вот на помощь к нам

приходят команды, мы создаем свойство данной команды и привязываемся и

даже если его нет - наша программа не упадет и будет работать как надо.

Второй класс – RelayCommand показан на рисунке 3

Рисунок 3 – Листинг метода связки команд между View и ViewModel

Далее можно рассмотреть реализацию на примере зашифрованных

файлов. Основной класс с бизнес-логикой основан на ранее созданном Base-

ModelView. Пример его реализации показана на рисунке 4

Рисунок 4 – Листинг примера реализации класса логики в MVVM

Каждое свойство обладает своим геттером и сеттером. Это показано на

рисунке 5

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.6 21-24 апреля 2020 г.

Рисунок 5 – Листинг примера указания свойств класса

Методы задаются с типом ICommand также с разной доступностью. Это

показано на рисунке 6

Рисунок 6 – Листинг примера команды во ViewModel

В XAML доступ осуществляется через привязку Binding. Это показано

на рисунке 7

Рисунок 7 – Листинг примера привязки свойств View и ViewModel

В рассмотренном примере реализации получаем готовый шаблон, с по-

мощью которого можно вести дальнейшую разработку. Полученный резуль-

тат, показанный в рамках данного примера можем увидеть на форме. Итого-

вая форма с полученными данными файлов показана на рисунке 8

XII Всероссийская научно-практическая конференция

молодых ученых «РОССИЯ МОЛОДАЯ»

21114.7 21-24 апреля 2020 г.

Рисунок 8 – Форма WPF с данными связанными на основе MVVM

Список литературы:

1. Документация Visual Studio. Общие сведения о WPF и XAML.

[Электронный ресурс]: Электрон. Текстовые дан. – 2018 - URL:

https://docs.microsoft.com/ru-ru/visualstudio/designers/getting-started-

with-wpf

2. Криптография в C# (RSA, DES, SHA1). [Электронный ресурс]:

Электрон. Текстовые дан. – 2015 - URL:

https://studlearn.com/works/details/primery-kriptografii-na-c-rsa-des-

sha1-575

3. Что такое менеджер паролей и для чего он вашей компании.

[Электронный ресурс]: Электрон. Текстовые дан. – 2015 - URL:

http://ru.99rabbits.com/get-password-manager

4. Donohue, Brian. Двухфакторная аутентификация: что это? [Элек-

тронный ресурс]: B. Donohue - Электрон. Текстовые дан. – 2014 –

URL:

https://www.kaspersky.ru/blog/what_is_two_factor_authenticatio/4272

