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Введение 

С исторической точки зрения вейвлет-преобразование (операционное 

вейвлет-исчисление) является новым методом, хотя его математические осно-

вы восходят к работе Жан-Батиста Жозефа Фурье (Франция) на рубеже 18-19 

веков. Фурье заложил основы теории частотного анализа, которая оказалась 

чрезвычайно важной и влиятельной. 

Внимание исследователей постепенно переключилось с частотного ана-

лиза на масштабный, когда стало ясно, что подход, измеряющий средние зна-

чения в разных масштабах, может оказаться менее чувствительным к разного 

рода помехам. 

Исторические аспекты возникновения и развития 

вейвлет-процессинга 

Оригинальная идея принадлежит Фурье: аппроксимировать сложную 

функцию как сумму более простых функций, которые сами получаются из 

одной простой функции прототипа (материнской функции). 

Функция-прототип, также известная как базисная функция, может рас-

сматриваться как строительный блок, а исходная функция может быть ап-

проксимирована или – при определенных условиях – полностью представлена 

с помощью аналогичных строительных блоков. 

Фурье использовал синусоиды различных частот в качестве строитель-

ных блоков. Представления Фурье использовались в различных областях, ко-

торые требовали анализа сигналов. Однако эти представления имели один 

существенный недостаток, связанный с использованием синусоид в качестве 

базисных функций. Синусоиды имеют идеальное представление в частотной 

области, но не во временной (говорят: «они хорошо локализованы в частот-

ном пространстве»). Другими словами, они растягиваются во времени до бес-

конечности, и поэтому их нельзя использовать для аппроксимации нестацио-

нарных сигналов. С другой стороны, представление Фурье только обеспечи-

вает отображение функции без указания о временной локализации. Поэтому 

для анализа нестационарных сигналов, спектральное содержание которых из-

меняется во времени, требуется время-частотное представление (TFR – Time-

Frequency Representation), а не просто частотное представление.  
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Первая модификация преобразования Фурье, позволяющая анализиро-

вать нестационарные сигналы, появилась в виде кратковременного преобра-

зования Фурье (STFT – Short Time Fourier Transform). Идея STFT заключалась 

в сегментации сигнала с помощью окна с временной локализацией и выпол-

нении анализа для каждого сегмента. Поскольку преобразование Фурье было 

вычислено для каждого оконного (то есть локализованного по времени) сег-

мента сигнала, STFT смог обеспечить истинное время-частотное представле-

ние. 

В 1932 году вышла статья физика E.P. Wigner по квантовой механике, 

касающаяся коррекции уравнения Шрёдингера, в которой он впервые ввел в 

рассмотрение особую функцию-распределение по типу распределений плот-

ности вероятностей, содержащую так называемые «атомарные функции». Та-

кая функция позволяла при обработке 1D-сигналов использовать методы 

адаптивной аппроксимации. Эта статья внесла свою лепту в получивший в 

дальнейшем признание аппарат вейвлет-преобразований.  

В 1948 г. французский математик J. Ville в своей статье по использова-

нию аналитических сигналов при их передаче по кабельной линии связи рас-

смотрел похожую функцию распределения. Впоследствии  это распределение 

в теории обработки сигналов было названо распределением Вигнера-Вилле. 

Деннис Габор (Венгрия – Англия, «отец голографии»), который был за-

интересован в представлении сигнала с использованием колебательных ба-

зисных функций во время-частотном пространстве, был первым, кто изменил 

преобразование Фурье в виде STFT в 1946 году. В частности, Д. Габор ввел в 

практику обработки сигналов особую функцию («функцию Габора»), которая 

позволяла успешно аппроксимировать сигналы с наличием колебательных 

составляющих. При этом заметим, что эта функция описывалась пятью пара-

метрами, что в итоге давало возможность весьма гибко подстраивать ее под 

аппроксимируемые реальные сигналы различной природы. В период с конца 

1940-х по начало 1970-х годов было разработано множество других TFR, 

каждое из которых отличалось от других только выбором оконной функции. 

Однако все эти преобразования страдали одним серьезным недостат-

ком: все они использовали одно и то же окно для анализа всего сигнала. В 

конце 1970-х годов инженер-геофизик Д. Морле, столкнулся с проблемой 

анализа сейсмических сигналов, которые имели высокочастотные компонен-

ты с короткими временными промежутками, а также низкочастотные компо-

ненты с длинными временными промежутками. Все известные преобразова-

ния были способны анализировать либо высокочастотные компоненты, ис-

пользующие узкие окна (широкополосный частотный анализ), или низкоча-

стотные компоненты с использованием широких окон (узкополосный частот-

ный анализ), но не оба сразу. Поэтому у него возникла гениальная  идея ис-

пользовать другую, специфическую, оконную функцию для анализа различ-

ных частотных диапазонов. Кроме того, все эти окна были созданы путем 

расширения или сжатия базисной функции Гаусса. Такие оконные функции 

имели компактную поддержку как по времени, так и по частоте (так как пре-
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образование Фурье-Гаусса также является гауссовым). Д. Морле назвал свои 

базисные функции «вейвлетами постоянной формы». Однако он также столк-

нулся с большой критикой со стороны своих коллег. В 1980 году, в поисках 

помощи с целью найти математически строгую основу для своего  подхода, 

Д. Морле встретил физика-теоретика квантовой механики А. Гроссмана, ко-

торый помог ему формализовать преобразование и сформировать обратное 

преобразование. Но они не знали, что вейвлет-преобразование, разработанное 

ими, было своего рода повторным открытием в форме, возможно, немного 

другой, интерпретации работы А. Кальдерона 1964 года по гармоническому 

анализу. 

Французский математик Y. Meyer, который обнаружил сходство между 

работами Д. Морле и А. Кальдерона в конце 70-х гг., также отметил, что было 

много избыточности в выборе базисных функций (которые были тогда из-

вестны  как вейвлеты Морле). Очарованный этой элегантной схемой анализа 

нестационарных функций-сигналов, И. Мейер начал работать над созданием 

вейвлетов с улучшенной локализацией. В 1985 году он построил ортогональ-

ный вейвлет-базис функции с очень хорошей локализацией по времени и ча-

стоте. По иронии судьбы, оказалось, что другой гармонический аналитик, J.-

O. Stromberg, уже обнаружил те же самые всплески около пяти лет назад. 

Также добавим, что ни И. Мейер, ни Ж.-О. Стромберг не первые обнаружи-

вают ортонормированные вейвлет-базисные функции. Первооткрывателем 

был немецкий математик А. Хаар в 1909 году. Их практическое применение 

ограничено плохой частотной локализацией вейвлетов.  Позже было обнару-

жено, что работы Хаара по разработке ортонормированных базисных функ-

ций были расширены в 1930-х годах Полом Леви, который изучал случайные 

сигналы броуновского движения. 

В то же время, Ингрид Добеши (Бельгия-США) разработала вейвлет-

фреймы для дискретизации временных и масштабных параметров вейвлета, 

что давало больше свободы в выборе базисных функций за счет некоторой 

избыточности. В 1992 году вышла ее наделавшая много шума книга «Ten lec-

tures on wavelets», в которой изящно, и, в то же время, математически строго 

была изложена на фундаментальном уровне базовая теория вейвлет-функций 

и основы время-частотного вейвлет-анализа.    

В 1986 году St. Mallat (Франция) разработал идею кратномасштабного 

анализа (MRA – Multi-Resolution Analysis) для дискретных вейвлет-

преобразований (DWT – Discrete Wavelet Transform) совместно с И. Мейером, 

который позже, в 1988, году защитил PhD-диссертацию. Работа Ст. Малла 

позволяла анализировать 1D-сигналы в рамках меняющихся окон во времен-

ной и частотной областях. Также в 1988 году были заложены расширенные 

основы современной вейвлет-теории с введением новых вейвлет-базисов. 

В последние десять лет в основном шли поиски других вейвлет-

базисных функций с различными свойствами и модификациями алгоритмов 

MRA. В 1992 A. Cohen и И. Добеши с коллегами ввели понятие ортогональ-

ных вейвлетов с компактным носителем, что открыло широкие возможности 
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в сфере обработки сигналов. Позже усилиями других математиков были раз-

работаны вейвлет-пакеты, представляющие естественное расширение MRA. 

Но при изобилии научных трудов математического уровня,  публика-

ций, касающихся применению вейвлет-преобразований для целей автомати-

зации технологических процессов, практически нет. 

Следует отметить, что одной из первых публикаций в России, посвя-

щенных проблемам автоматизации технологических процессов с активным 

применением аппарата вейвлет-преобразований,  была докторская диссерта-

ция Федосенкова Б.А. (Россия), защищенная в Москве в 2005 году, в которой  

решались проблемы смесеприготовления в пищевой промышленности.   

Применение вейвлет-преобразований в автоматизации 

технологических процессов 

В последнее десятилетие в сфере автоматизации и систем управления 

технологическими процессами (ТП) начинают использоваться вейвлет-

преобразования. В связи с этим ведутся новые разработки комплексов про-

грамм и устройств для работы с тем или иным вейвлет-преобразованием.  

Есть много различных вейвлет-преобразований, но почти все они пред-

ставляют сигнал в одномерном виде. Это не дает полную картину происхо-

дящего в объекте. Поэтому в системах автоматического и автоматизирован-

ного управления для текущего мониторирования и управления целесообразно 

использовать вейвлет-преобразования в многомерном  виде. Также следует 

отметить, что все существующие на сегодняшний день так называемые 

SCADA-системы (системы диспетчерского уровня, выполняющие функции 

супервизорного управления и сбора данных – Supervisory Control and Data 

Acquisition) являются одномерными. А это обстоятельство не позволяет 

SCADA-системам сопровождать технологические производственные струк-

туры, в которых в ходе производственного цикла возникают нестационарные 

процессы, то есть процессы с меняющимися мгновенными интенсивностями 

сигналов и мгновенными динамическими спектрами.                   

Мексиканская шляпа 

Начнем с простого вейвлета - Мексиканской шляпы, показанного на 

Рис. 1. Нам удобнее представлять его «опрокинутым», с провалом посередине 

(верх шляпы) и двумя горбами по бокам. 

 
Рисунок 1- Вейвлет Мексиканская шляпа 



 

 

XII Всероссийская научно-практическая конференция  

молодых ученых «РОССИЯ МОЛОДАЯ» 

211106.5                                 21-24 апреля 2020 г. 

Важно заметить, что для этого вейвлета площади положительных и от-

рицательных значений чисел под кривой равны. Этот факт известен как усло-

вие допустимости. 

Аналитическое выражение для вейвлета Мексиканской шляпы: 

 
т.е. он является второй производной гауссиана. Условие допустимости (До-

беши) выполняется если: 

 
Условие допустимости означает, что существует обратное преобразова-

ние и применима формула Парсеваля. Выбор вида огибающей вейвлета для 

проведения анализа является одним из важнейших решений, которые должен 

принять исследователь. Общим правилом здесь является то, что вид вейвлета 

должен быть похож на вид анализируемых данных. Если сигнал гладкий, бе-

рем гладкий вейвлет типа рассмотренного выше, если нет - то делаем другой 

выбор. 

Вейвлет морле 

Вейвлет Морле - исторически первая функция, получившая название 

вейвлета. Хотя дискретные функции (вейвлеты) Хаара были изучены гораздо 

раньше вейвлетов Морле, но только с работы Морле началось изучение этих 

функций в контексте время-частотного анализа.  

Вейвлет Морле тесно связан с кратковременным (оконным) преобразо-

ванием Фурье. Он получается следующим образом: берется комплексная си-

нусоида, и на нее накладывается колоколообразная гауссовская функция (Рис. 

2). 

Непериодическая функция может быть усечена таким образом, чтобы 

условие допустимости удовлетворялось. Для синусоиды единичной частоты 

внутри огибающей ширины z0 / π, имеем 

 

 

Рисунок 2 – Действительная (сплошная) и мнимая (штриховая) части   

вейвлета Морле при z0 = 5. 
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Выбор z0 отражает компромисс между локализацией во времени (Мек-

сиканская шляпа локализует единичные пики) и по частоте (бесконечно про-

тяженная синусоида локализована по частоте): значение z0 = 5 рекомендуется, 

но может быть и изменено. 

Так как вейвлет-преобразование имеет вещественную и мнимую части, 

удобно представить его в полярных координатах: норма есть амплитуда пре-

образования и, будучи связана с локальной энергией, представляет главный 

интерес, тогда как полярный угол (фаза) дополняет общую картину. Так же,  

как и в случае преобразования Фурье, для вычисления обратного преобразо-

вания требуется знание как вещественной, так и мнимой частей. Ниже будет 

показана только амплитудная часть преобразования. Для того, чтобы квадрат 

нормы преобразования Морле соответствовал бы локальной спектральной 

энергии, он должен быть поделен на нормирующий коэффициент 

 
Для общего значения z0 = 5, используемого в вышеприведенных графи-

ках, Cg = 1.44057. 

Комплексный вейвлет морле «cmorb-c» 

 
Здесь B — пропускная способность; C — центральная частота. 

В статье везде (без специального указания) величины B, C задаются с 

плавающей точкой. 

Вейвлеты гауса 

Наряду с разрывными функциями, подобными вейвлетам Хаара, в 

вейвлет-преобразованиях сигналов используются и непрерывные вейвлеты. 

Наиболее распространенные вещественные базисы таких вейвлетов констру-

ируются на основе производных функции Гаусса g(t) = exp(–t2 / 2): 

 
Это обусловлено тем обстоятельством, что функция Гаусса имеет 

наилучшие показатели локализации как во временной, так и в частотной об-

ластях (Чуи, 2003). Для материнского гауссова вейвлета n-го порядка можно 

записать в более компактной форме: 

 
Вейвлеты шэннона 

В функциональном анализе Шэннона К.Э. вейвлет может быть либо ре-

альной, либо комплексной функцией. Анализ сигналов от идеальных полосо-

вых фильтров определяет разложение, известное как вейвлет Шэннона.  
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Здесь B — ширина полосы; C — центральная частота. 

 
Рисунок 3 – Вейвлет Шэннона 

 

Вейвлет габора 

Вейвлеты Габора являются вейвлетами, сформированными Д. Габором.   

В них используются сложные функции, построенные так, чтобы служить ос-

новой для преобразований Фурье в теории информации и ее приложениях. 

Они очень похожи на Морле-вейвлеты. Эти вейвлеты также тесно связаны с 

фильтром Габора . Важное свойство вейвлета – сведение к минимуму произ-

ведения его стандартных отклонений во временной и частотной областях. 

Иными словами, неопределенность в информации, передаваемой этим 

вейвлетом, сводится к минимуму. С момента своего создания появились раз-

личные приложения: от обработки изображений для анализа состояния 

нейронов в зрительной системе человека до регистрации и управления дина-

микой технологических процессов в различных отраслях промышленности. 

Функция вейвлета Габора является гауссовой и модулируется ком-

плексной экспонентой; описывается следующим образом: 

 
В отличии от других функций, обычно используемых в качестве осно-

ваний в преобразованиях Фурье, вейвлеты Габора облают свойствами ло-

кальности,  возможности смещения по временной оси, изменения модуляции 

с определенными частотами, возможности варьирования фазы вейвлета в 

диапазоне (0, 2π) и нормирования его по мгновенной амплитуде.  
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Рисунок 4 – Вейвлет Габора 

Заключение 

Вейвлет-анализ пользовался огромным вниманием и успехом в течение 

последнего десятилетия, а также в течение многих лет. Практически все сиг-

налы, встречающиеся на практике, требуют время-частотного анализа и 

вейвлет-процессинга – очень простого и эффективного средства для проведе-

ния такого анализа. Так что же дальше? Теоретические разработки вейвлетов 

были в значительной степени завершены за последние два десятилетия. Ис-

пользование вейвлетов в сфере автоматизации технологических процессов и 

систем управления  играет огромную роль, так как в последние годы автома-

тизация быстро развивается и требует сокращения временных затрат на кор-

ректирующие воздействия на объект. А вейвлет-преобразования хорошо 

справляются с этим – помогают представить одномерный или многомерный 

сигналы с датчика в понятной для оператора форме. Это способствует более 

точному и оперативному управлению как в одномерных, так и в многомерных 

системах технологического назначения.  
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