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Энерговооруженность и удельные энергозатраты процесса разрушения 

породы инструментом горной машины являются основными параметрами, 

определяющими ее производительность. Правильный выбор породоразруша-

ющего инструмента [1], параметров схемы его установки и закрепления [2–9] 

на исполнительном органе уменьшают нагрузку на инструменте, его напря-

женно-деформированное состояние [10–15]. При решении этих задач необхо-

димо учитывать многолетний опыт исследований и эксплуатации породоразру-

шающего инструмента на горных машинах [1, 16–18]. Сложные горно-

геологические условия эксплуатации породоразрушающего инструмента гор-

ной машины вызывают переменные по величине нагрузки с амплитудой в 5–

10 раз превышающей средние усилия резания и подачи. В этой связи при 

обосновании  формы, размеров и геометрических параметров инструментов 

горных машин необходимо учитывать закономерности механизма разруше-

ния горной породы. Современный режущий инструмент применяется на 

очистных, проходческих комбайнах и бурильных машинах в породах крепо-

стью f ≤ 8. 

При разрушении угля (f ≤ 3) резцом имеют место процессы дробления и 

скалывания (рис. 1) [19]. 

 

 
 

Рис. 1. Схема процесса взаимодействия режущего инструмента с углем 

 



 

 

В соответствии с экспериментально-статистической теорией резания 

углей лаборатории резания угля ИГД им. А.А. Скочинского на участках I, II, III 

происходит дробление угля с образованием мелкофракционного пылевидного 

ядра, возрастает до максимального значения усилие резания Z, на что расхо-

дуется до 78% энергии всего процесса резания. На участке IV происходит 

скалывание крупного, с большим поперечным сечением элемента угля и уси-

лие резания Z резко уменьшается до величины близкой к нулю. 

На рис. 2, а приведены характерные импульсы усилия резания угля (Ар = 

240 Н/мм) одиночным радиальным резцом в функции времени [20], получен-

ные экспериментально на кафедре ГМиК университета. Резец И-79 С имел 

следующие параметры: ширина резца b = 16 мм; передний угол γ = 5°; задний 

угол α = 10°. Математическая обработка осциллограмм позволила установить 

средние значения усилия резания, по которым построен осредненный им-

пульс усилия резания (рис. 2, б). По оси ординат определялись значения уси-

лий  резания Zн и Zк, при которых, соответственно, начинается и окачивается 

очередной скол, а по оси абсцисс определялись периоды: дробления угля с 

образованием мелкофракционного пылевидного ядра, сопровождающегося 

возрастанием до максимального значения усилия резания Z; скалывания 

крупного, с большим поперечным сечением элемента угля, что сопровожда-

ется резким уменьшением усилия резания Z. 

            

 
 

Рис. 2. Импульсы усилия резания угля одиночным радиальным резцом 



 

 

Из графика на рис. 3 [19] видно, что усилие резания Z породы эталон-

ным резцом прямо пропорционально сопротивляемости резанию Ар, которая 

составляет для угля 60–300 Н/мм, аргиллита 150–250 Н/мм, алевролита 300– 

600 Н/мм, сильвинита 370–490 Н/мм, кембрийской глины 140–160 Н/мм. 
 

 
 

Рис. 3. Влияние сопротивляемости породы резанию на усилие резания Z 

 

На рис. 4 зависимости 1 и 2 показывают [19] характер изменения усилий 

Y и Z на эталонном остром резце (ширина резца b = 1 см, угол резания δ = 80°,  

α = 10°) при резании угля сопротивляемостью Ар = 200 Н/мм в эталонном ре-

жиме. Зависимость 3 получена при исследовании [21] резания соляных пород 

(сильвинита) режущим инструментом установки ДКС-4 с параметрами: ширина 

резца b = 2 см, угол резания δ = 50°, α = 10°). С увеличением глубины резания h 

с 1 до 8 мм усилие подачи Y возрастает в 4,3 раза, а усилия резания Z увели-

чиваются, соответственно, в 6,4 (зависимость 2) и в 5,2 раза (зависимость 3). 
 

 
 

Рис. 4. Зависимости усилия подачи Y (1) и усилий резания Z (2, 3) 

на остром резце от глубины резания h 

 

На рис. 5 представлены зависимости усилия подачи Y и резания Z при 

затуплении, изнашивании задней грани резца [19]. 



 

 

Из графиков на рис. 5 наглядно видно, что при интенсивном изнашива-

нии задней грани резца образуется площадка S, влияющая на усилия Z и Y. 

При изменении величины кинематического заднего угла αк резца с 7° до 2° 

усилие резания Z возрастает до 36 %, а усилие подачи Y резко увеличивается 

до 64 %. У резцов с углом αк менее 5–7° площадки износа задней грани резца 

развиваются более интенсивно, что сопровождается существенным увеличе-

нием нагрузок на резце. При αк менее 5–7° усилие подачи Y на резце больше 

усилия резания Z. С другой стороны при αк более 5–7° усилие резания Z пре-

вышает усилие подачи Y. Соотношение усилия подачи Y к усилию резания Z 

(рис. 5) целесообразно оценивать коэффициентом Кп = Y/Z. Например, для 

острого резца Кп = 1,0–0,67. Как показывают результаты исследований, для ра-

диальных резцов коэффициент Кп имеет следующие значения: Кп = 0,8 (РПП-2), 

Кп = 0,57 (РК-8Б), Кп = 0,88 (И90МБ), Кп = 0,62 (ЗР2.80), Кп = 0,85 (ЗР4.80). 

 
Рис. 5. Зависимости усилий резания Z (1) и подачи Y (2)  

от величины кинематического заднего угла αк резца 

 

Аналогичные результаты получены при варьировании боковых углов φ 

резца, которые позволили рекомендовать рациональное значение φ = 10–12° и 

переднего угла γ = 10–15°. Расчеты показали, что при коэффициенте трения о 

переднюю и боковые грани резца μ = 0,25, дополнительное сопротивление 

подачи резца от сил трения угля о переднюю и боковые грани резца по вели-

чине небольшое, им можно пренебречь [19]. 

На рис. 6 приведена типичная осциллограмма процесса резания кем-

брийской глины (Ар = 160 Н/мм) эталонным резцом: ширина резца b = 1 см; 

угол резания δ = 60°; задний угол α = 10°. Резание глины производилось в 

эталонном режиме блокированного резания с выровненной поверхности [22]. 

При взаимодействии резца с соляными породами механизм их разруше-

ния отличается от механизма разрушения углей в том, что при первоначаль-

ном контакте инструмента с породой она пластически деформируется. Далее 

происходит процесс дробления соляной породы на мелкие фракции (менее 

0,25 мм) с образованием мелкодисперсного ядра перед передней гранью резца 

и в дальнейшем обеспечивает объемное скалывание породы. Как показали 



 

 

исследования процесса разрушения глины резцами ШБМС-1-1-04, РК-8Б, 

РПП также как при резании угля, он является циклически повторяющимся с 

чередованием фаз контактного дробления и крупных сколов. При h = 10 мм 

максимальная длина крупных сколов составляла 70 мм. При резании глины 

нижняя поверхность прорезаемой канавки имеет прямолинейную форму, что 

объясняется высокой вязкостью кембрийской глины. В поперечном сечении 

сколы имеют форму трапеции с боковыми сторонами, соответствующими уг-

лам наклона боковых стенок канавок (ψ = 70–75°) прорезаемых в хрупком уг-

ле. С изменением глубины резания h с 5мм до 15 мм, усилия резания Z глины  

возрастают в 3,5 раза. При глубине резания h = 10 мм и 15 мм средние усилия 

резания кембрийской глины составило Zср = 0,2 и 0,265 кН, а максимальные – 

Zmax = 0,52 и 0,85 кН. 
 

 
 

Рис. 6. Осциллограмма процесса резания кембрийской глины эталонным резцом 

 

При выборе схемы расстановки режущего инструмента на исполни-

тельном органе, при расчетах усилий резания и подачи, важное значение име-

ет параметр фактического удельного давления Руд. = Y/S на поверхности кон-

такта S резца с разрушаемым массивом, устанавливающего связь усилия по-

дачи Y с площадью S проекции поверхности контакта резца с массивом пер-

пендикулярной направлению подачи инструмента. Этот параметр определял-

ся по экспериментальным данным, приведенным выше для 18 резцов.  

В табл. 1 приведены, в качестве примера, результаты расчетов фактиче-

ского удельного давления для условий резания угля, сильвинита и кембрий-

ской глины при глубине стружки h = 4 мм четырьмя резцами. 

Таблица 1 

Фактические удельные давления при резании угля 

Параметр 
Марка резца 

РК-8Б РПП-2 ЗР1.80 И90МБ 

Кп  0,6–0,8 0,7–0,8 0,5–0,6 0,5–0,6 

S, см2  2,5 4,24 3,34 2,76 

Руд., кН/см2 0,32 0,43 0,36 0,34 

 

В табл. 2 приведены результаты расчетов фактического удельного дав-

ления для условий резания угля, сильвинита и кембрийской глины при глу-

бине стружки h = 4 мм резцом РПП-2. 

 



 

 

Таблица 2 

Фактические удельные давления при резании угля, сильвинита,  

кембрийской глины и углецементного блока 

Параметр 

Разрушаемый массив 

Уголь Сильвинит Кембрийская 

глина 

Углецементный 

блок 

h = 4 мм 

Ар, Н/мм  200 370 160 240 

Руд., кН/см2 0,52 0,96 0,33 0,74 

h = 6 мм 

Ар, Н/мм 200 370 160 240 

Руд., кН/см2 0,48 0,86 0,27 0,7 

h = 8 мм 

Ар, Н/мм 200 370 160 240 

Руд., кН/см2 0,42 0,78 0,25 0,68 

 

Расчетные данные показали, что при возрастании параметра сопротив-

ляемости массива резанию Ар удельные давления Руд. возрастают, а с увели-

чением глубины резания h площадь S проекции поверхности контакта резца с 

массивом становится больше, что сопровождается уменьшением удельного 

давления Руд.. 
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