УДК 620.183 /620.184 МЕТОДИКА КОНТРОЛЯ КАЧЕСТВА ПОДШИПНИКОВЫХ СТАЛЕЙ

Шакиров., студент гр. МСм–181, I курс Видин Д. В., ст. преп.каф. «МСиИ» Лащинина С. В., ст. преп.каф. «МСиИ» Научный руководитель: Короткова Л.П., к.т.н., доцент Кузбасский государственный технический университет имени Т.Ф. Горбачева, г. Кемерово

Введение. Подшипниковые стали предназначены для изготовления деталей машин, работающих в условиях абразивного, усталостного износа, а так же в условиях высоких контактных давлений и ударных нагрузок. Поэтому к ним предъявляются повышенные требования по усталостной прочности и износостойкости. Из них изготавливают внутренние и внешние кольца, шарики и ролики подшипников. Подшипниковые стали — это стали марок ШХ4, ШХ15, ШХ15СГ [1].

Износостойкость этих сталей обеспечивается химическим составом, а именно высоким содержанием углерода, а также термической обработкой на мартенситную структуру с максимальной твердостью HRC 60÷62, а усталостная прочность — за счет повышенных требований к качеству сталей. Преимуществом подшипниковых сталей являются хорошие технологические свойства. Они удовлетворительно деформируются в холодном и горячем состоянии, хорошо обрабатываются резанием, но относятся к группе материалов трудносвариваемых. Характеризуются повышенной прокаливаемостью до 30 мм, что позволяет их использовать, в их том числе, для изготовления крупногабаритных подшипников [2].

Химический состав подшипниковых сталей и их аналогов немецкого производства SKF приведен в табл. 1. Как видно, это легированные стали перлитного класса, содержащие около 1 % углерода. Основными легирующими элементами являются хром $(0,4\div2~\%)$, марганец (до 1,7 %) и кремнием (до 0,85 %). Стали являются высококачественными, содержат пониженное количество серы и фосфора (S \leq 0,02 %, P \leq 0,027. Подшипниковые стали легируют с целью улучшения основных и технологических свойств [3,4].

Из сравнительного анализа химического состава подшипниковых сталей (табл.1) видно, что отечественные марки имеют преимущество по химическому составу перед марками производства Германии, т. к. они дополнительно легированы никелем и медью. Эти элементы улучшают основные свойства: никель повышает ударную вязкость и понижает температурный порог хладноломкости, а медь - снижает коэффициент трения. К тому же к отечественным подшипниковым сталям предъявляются более жесткие требования по наличию вредных примесей.

Таблица 1 Химический состав сталей ШХ4, ШХ15, ШХ15СГ (ГОСТ 801) и зарубежный аналог SKF [1,4]

	Массовая доля элементов, %								
Марка стали	Углерод	Кремний	Марганец	Хром	Cepa	фофоф	Никель	Медь	Никель+ +медь
		不	N		не более				
ШХ15	0,95-1,05	0,17-0,37	0,20-0,40	1,30-1,65	0,02	0,027	0,3	0,25	0,5
100cr6	0,93-1,05	0,15-0,35	0,25-0,45	1,35-1,6	0,015	0,025	1	0,3	-
ШХ15СГ	0,95-1,05	0,40-0,65	0,90-1,20	1,30-1,65	0,02	0,027	0,3	0,25	0,5
100crmn6	0,90-1,05	0,5-0,7	1,00-1,20	1,40-1,65	0,025	0,03	0,3	0,3	-
ШХ4	0,95-1,05	0,15-0,30	0,15-0,30	0,35-0,50	0,02	0,027	0,3	0,25	0,5
100cr2	0,9-1,05	0,15-0,35	0,25-0,45	0,4-0,6	0,025	0,03	0,3	0,3	-

Таблица 2

Контролируемые параметры структуры и свойств подшипниковых сталей в состоянии поставки [1,5]

№ п/п	Параметры контроля	Технические требования ГОСТ 7565		
1	Определение химического состава			
2	Контроль геометрических размеров и поверхности	ГОСТ 6507, ГОСТ 166, ГОСТ 4381,		
3	Испытание на осадку	ГОСТ 8817		
4	Твердость в состоянии поставки	ΓΟCT 9012		
5	Твердость после закалки или закалки и отпуска	ГОСТ 9013		
6	Макроструктура	ΓΟCT 10243, ΓΟCT 21120, ΓΟCT 12503		
7	Излом	ГОСТ 9454		
8	Глубина обезуглероженного слоя	ΓΟCT 1763		
9	Карбидная сетка	ГОСТ 801		
10	Структурная полосчатость и карбидная ликвация	ΓΟCT 801		
11	Неметаллические включения	FOCT 1778		
12	Микропористость	ГОСТ 801		

На кафедре «Металлорежущие станки и инструменты» КузГТУ была разработана методика контроля качества подшипниковых сталей. Необходимость разработки такой методики возникла в связи с проведением исследований подшипников, используемых в горнодобывающей промышленности, с целью установления причин преждевременного выхода их из строя.

Результаты исследования. Подшипники скольжения горношахтного оборудования отличаются большими габаритными размерами и тяжелыми условиями эксплуатации. При анализе причин их преждевременного разрушения необходимо учитывать несколько факторов, связанных с неправильной эксплуатацией, сборкой конструкции, а также с низким качеством подшипниковых сталей и их термической обработки.

В настоящей работе проблема контроля качества подшипниковых сталей решалась комплексно. В частности, как упоминалось, разработана методика контроля качества, которая учитывает состояние металла после металлургического передела и на стадии производства подшипников. Так, она учитывает параметры структуры и свойств, которые должны быть обеспечены сталям в состоянии поставки и на этапе упрочняющей термической обработки в соответствии с действующими стандартами.

Подшипниковые стали на машиностроительные предприятие поступают в виде горячекатаного отожженного проката или холоднокатаного калиброванного проката в виде прутка или колец. Их контролируют в состоянии поставки, а так же проводится контроль качества термической обработки. Контроль качества подшипниковых сталей проводится в соответствии с техническими требованиями по ГОСТ 801.

В стандарт включены следующие параметры для контроля [1]:

- -наличие дефектов;
- линейные размеры и конфигурация;
- химического состав;
- механические свойства;
- технологические свойства;
- макро- и микроструктура.

Перечень нормативных документов, используемый при входном контроле для оценки качества подшипниковых сталей, приведен в табл. 2:

Химический состав позволяет качественно и количественно идентифицировать марку стали и установить соответствие металлопродукции нормам, заявленным в сертификате. С этой целью используются методы химического и спектрального анализов в соответствии со следующими стандартами: ГОСТ 28473, ГОСТ 12344, ГОСТ 12345, ГОСТ 12346, ГОСТ 12347, ГОСТ 12356, ГОСТ 12348, ГОСТ 12350, ГОСТ 12352, ГОСТ 12355, ГОСТ 12356, ГОСТ 17745.

Контроль геометрических размеров и поверхности для размеров, указанных в сертификате на материал. В стандарте оговорено место измерения и вид инструмента.

Измерения проводятся мерительными инструментами, обеспечивающими погрешность измерения, равную половине допуска на измеряемый параметр. Измерения проводятся приборами в соответствии со стандартами, например: микрометром по ГОСТ 6507 или ГОСТ 4381; штангенциркулем по ГОСТ 166; металлической линейкой по ГОСТ 427 и т. д. Технические требования на измерения зависят от вида сортамента (пруток, лента, лист и т. д.). Они должны быть сформулированы в технологической инструкции на входной контроль.

Контроль качества поверхности проводятся методами неразрушающего контроля и визуальным осмотром.

Контроль основных механических свойств включает в себя измерения твердости в состоянии поставки методом Бринеля (ГОСТ 9012), а также после упрочняющей термической обработки методом Роквелла по шкале С (ГОСТ 9013).

Контроль макроструктуры и изломов проводится либо на темплетах визуальным осмотром, сравнивая ее с эталонами шкал по ГОСТ 10243, либо по фотографиям методом сравнения. Величину дефектов оценивают по баллам. Оценка дефекты разных видов производится отдельно по соответствующим шкалам. Допустимые параметры макроструктуры приведены в табл. 3, а микроструктуры – в табл. 4.

Таблица 3 Контролируемые виды дефектов макроструктуры подшипниковых сталей [1]

Наименование	Диаметр, сторона квадрата или толщина проката, мм	Максимально допустимый балл макроструктуры для проката из стали марок				
дефекта		Выплавка в открытых печах с вакуумированием	С электрошлаковым переплавом			
		ШХ4, ШХ15, Х15СГ	ШХ4, ШХ15, ШХ15СГ			
Цетральная пористость	30 и более	2	1			
Точечная неоднородность	от 30 до 95 включ.	1,5	1			
	100 и более	2	1			
Ликвационный квадрат (контур)	30 и более	0,5	Не допускается			
Осевая ликвация	Bce	2				
Ликвационные полоски	Bce	1				
Подусадочная ликвация (зона повышен- ной травимости)	Bce	2				

Таблица 4 Методика контроля микроструктуры подшипниковых сталей [1, 5]

№ п/п	Контролируе- мый показатель	Состояние образца (ТО)	Подготовка образца	Увели- чение микро- скопа	Метод оценки показа- телей	
1	Обезуглерожен- ный слой	Горячекатаный, отожженный	Поперечная плоскость, закалка	100 ^X и более	Измерение окулярной линейкой на пяти об- разцах (методика в ГОСТ 1763)	
2	Микроструктура перлита	Горячекатаный, отожженный	Поперечная плоскость, травление	500 ^X (450- 600)	В баллах по шкале №8 по ГОСТ 801. Допустимый балл 4-5	
3	Неметаллические включения	Горячекатаный, отожженный	Продольная плоскость, 90-110 закалка		Оксиды строчечные оценивают по шкале 1, сульфиды - по шкале 2 и недеформирующиеся оксиды (глобули) - по шкале 3 ГОСТ 801 (методика в ГОСТ 1778). Допустимый балл 1-3	
4	Карбидная сетка	Горячекатаный, отожженный	Продольная плоскость, травление до почернения	450-500 ^X	Сравнивается карбид- ная сетка с эталонами по шкале №4 по ГОСТ 801. Допустимый балл не более 3	
5	Структурная полосчатость	Горячекатаный, отожженный	Продольная плоскость, закалка	90-110 ^X	Сравнивается структурная полосчатость с эталонами по шкале №5 по ГОСТ 801. Доспустимый балл 2-4	
6	Карбидная Горячекатані ликвация отожженны		Продольная плоскость, закалка	90-110 ^X	Сравнивается карбид- ная ликвация с этало- нами по шкале №6 по ГОСТ 801. Допусти- мый балл 1-3	
7	Микропористость Горячеката отожжени		Продольная плоскость, закалка	90-110 ^x	Сравнивается микро- пористость с эталона- ми по шкале №7 по ГОСТ 801. Допусти- мый балл не более 2	

Контроль микроструктуры подшипниковых сталей включает в себя следующие параметры: обезуглероженный слой, микроструктуру перлита, наличие остатков карбидной сетки, структурную полосчатость, наличие ликвации, наличие неметаллических включений и микропористость.

Основным методом для оценки микроструктуры является метод сравнения с эталонными шкалами, которые приводятся в ГОСТ 801 [1].Перечень контролируемых параметров и допустимые их значения регламентируются в технических условиях стандартов на подшипниковые стали. В стандартах оговаривается увеличение, условие подготовки образцов, при котором контролируется каждый параметр микроструктуры, указываются допустимые параметры микроструктуры в баллах.

Вся необходимая информация для проведения металлографических исследований структуры, требования к параметрам структуры систематизированы в представленной методике и представлены в табл.4. Она включает в себя все предусмотренные стандартами параметры микроструктуры, которые отражают качество стали, формируемое как на стадии металлургического производства (структурная полосчатость, неметаллические включения, микропористость), так и при последующей предварительной термической обработке (обезуглероженный слой, микроструктура перлита, карбидная ликвация) и после упрочняющей термической обработки (карбидная сетка).

Заключение.

В настоящей работе предложена методика контроля качества подшипниковой стали, учитывающая основные стадии производства: качество металлургического передела, предварительной и упрочняющей термических обработок. Она разработана с учетом действующих стандартов. Включает в себя: структуру испытаний, методы испытаний, условия контроля, требования к допустимым параметрам микроструктуры и свойствам для подшипниковых сталей.

Список литературы

- 1. ГОСТ 801-78. Сталь подшипниковая. Технические условия. Введ. 1980-01-01. Москва: Изд-во стандартов, 2004. 23с.
- 2. Гольдштейн, М. И. Специальные стали: учеб. для вузов / М. И. Гольдштейн, С. В. Грачев, М. Г. Векслер. М.: Металлургия, 1985. 408 с.
- 3. Металлы и сплавы: справочник / под ред. Ю. П. Солнцева. СПб.: АНО НПО «Профессионал»; АНО НПО «Мир и Семья», 2003. 1066 с.
- 4. Ключ к сталям [Текст] : справочник / авт.-сост. К. Вегст, М. Вегст; пер. с 20-го нем. изд. под ред. Э. Ю. Колпишона СПб. : Профессия , 2006-724 с.
- 5. Контроль качества конструкционных сталей [Текст] : методические указания к практическому занятию / Л. П. Короткова, С. В. Лащинина ; ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. металлореж. станков и инструментов Кемерово : Издательство КузГТУ, 2017. 33 с.