УДК 622.684

Обоснование рационального использования экскаваторно автомобильного комплекса самосвала БелАЗ 75710 совместно с экскаватором P&H 2800 XPC на угольном разрезе «Черниговский».

Е.Н. Чекмарев, студент гр. MA-101, V курс

Научный руководитель: Д. В. Стенин, к.т.н., доцент

А. Г. Кульпин, ст. преподаватель

Кузбасский государственный технический университет имени Т.Ф. Горбачева, Кемерово

г. Кемерово

Неистовый рык двигателей, яркие фары, освещающие путь перед собой, клубы вздымающейся пыли, и вот «Мега-монстр» - целое здание в три этажа движется на вас! Все, что поможет вам легко определить от предшествующих самосвалов-гигантов так это расположение спереди 8 воздушных фильтров. Перед вами самосвал БелАЗ 75710 — еще одно невероятно великое достижение конструкторов

Появление самого большого грузовика в мире диктуется современными условиями, когда горнодобывающей промышленности требуется всё более тяжелая и мощная техника. В последние годы производство карьерных самосвалов сверхвысокой грузоподьёмности выросло в 2 раза и тенденция роста сохраняется. С учетом спроса на рынке БелАЗ будет выпускать около 1000 подобных машин в год. Самосвал, существующий в одном экземпляре и вполне применяемый здесь у нас в Кузбассе, перевозит невероятный по своей массе груз более 400 тонн!

Неспроста он может претендовать на место в книгу рекордов Гиннеса, ведь, за прошедшие с тех пор годы сформировался отдельный мир этих машин, где за лидерство боролись Caterpillar, Liebherr, Terex, Euclid, Hitachi, Котаtsu и БелАЗ. И вот 22 января 2014 года новый белорусский гигант обошел всех конкурентов по самому главному показателю. Ему покорился вес в 503 тонны, что сразу на 140 тонн превосходит достижения прошлых лидеров — Liebherr T 282B, Caterpillar 797F и Висугиз МТ6300AC.

Практически, всю свою жизнь самосвал проведет в рудниках, иногда возвращаясь в сервисную базу для проведения технического обслуживания и ремонта. Ведь, самосвал обходится очень-очень дорого, и каждый час простоя- финансовые потери для горнодобывающей компании.

Следовательно, самосвалы работают в несколько смен, чтобы вывести как можно больше руды и тем самым окупить затраты на приобретение и прочие, связанные с эксплуатацией транспорта, материальные средства. Чаще всего огромные самосвалы используют вывоза вскрышных пород – слоя, скрывающего дары земли. В данной статье поставлена цель выявить и проверить насколько рационально используется экскаваторноавтомобильный комплекс («самосвал» в совокупности с экскаватором Р&Н 2800 XPC) на угольном разрезе «Черниговский» в двух ситуациях: 1) стандартной: вывоз вскрышных пород; 2) вывоз полезных ископаемых (угля). Возникает необходимость в расчете оптимальной загрузки самосвалов с учетом максимальной производительности. Для решения данной проблемы необходимо определить число ковшей для погрузки различной горной массы, имеющей различные характеристики по плотности и разрыхляемости. Далее, зная, число ковшей и условия погрузки сможем определить насколько самосвал использует собственный коэффициент грузоподъемности, а также проверим к чему приведет дополнительный еще один ковш погрузки.

Определение оптимального числа ковшей экскаватора к вместимости грузовой платформы самосвала при перевозке вскрышных пород.

Таблица	. 1 –	- Исходны	е ланные	лля ра	асчета
т астинде		полодио	о данные	дли р	ac icia

Длина маршрута, км	2,2
Средняя скорость движения самосвала, км/ч	25
Вместимость кузова самосвала, м ³	269,5
Максимальная грузоподъемность, т	450
Вместимость ковша экскаватора, м ³	34,96
Характеристика вскрышных пород	Песок смешанный с щебнем и
	галькой

Плотность горной массы $\rho = 1.7 \text{ т/м}^3$; коэффициент разрыхления $Kp \approx 1.2$; коэффициент экскавации $K \ni = 0.91$. Коэффициент наполнения ковша:

$$K_{HK} = K_{9} * K_{p} = 0.91*1.2 = 1.08$$

Расчет фактически загружаемого числа ковшей Принимается в большую сторону при ..0,67→1

$$n_{\text{\tiny KO}} = \frac{V_A K_{\text{\tiny III}}}{V_3 K_{\text{\tiny HK}}} = \frac{269.5 \cdot 1.0}{34.96 \cdot 1.08} = 7.137 \approx 7$$

Фактическое число ковшей по грузоподъемности:

$$n_{\text{KT}} = \frac{qK_{\text{p}}}{V_{\text{9}}K_{\text{HK}}\rho_{\text{II}}} = \frac{450 \cdot 1.2}{34.96 \cdot 1.08 \cdot 1.7} = 8.41 \approx 8$$

Из расчетных чисел $n_{\text{ко}}$ и $n_{\text{кг}}$ принять меньшее: 7

Фактическая масса груза

$$q_{\Phi} = \frac{n_{\text{\tiny K}} V_{3} K_{\text{\tiny HK}} \rho_{\text{\tiny LL}}}{K_{\text{\tiny D}}} = \frac{7 \cdot 34,96 \cdot 1,08 \cdot 1,7}{1,2} = 374,42 \text{ т}$$

Расчет коэффициентов использования грузоподъемности и емкости кузова автосамосвала.

$$\gamma_{\rm rp} = \frac{n_{\rm K}}{n_{\rm KF}} = \frac{7}{8,41} = 0.83$$

$$\gamma_{\text{o6}} = \frac{n_{\text{\tiny K}}}{n_{\text{\tiny KO}}} = \frac{7}{7,137} = 0.98$$

Известно, что при большем значении коэффициента использования грузоподъемности $\gamma_{\rm rp}$ для большегрузных карьерных самосвалов, нагружать более нецелесообразно поскольку транспортное средство будет чаще выходить из строя и простаивать в TP, покажем на примере расчета определения оптимальной степени загрузки автосамосвала.

 C_{3} – степень загрузки автосамосвала.

$$C_3 = \frac{n_{\phi}}{n_{\pi p}}$$

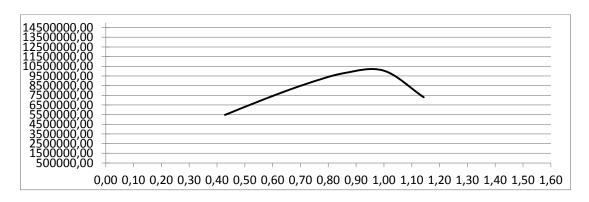

где $n_{\text{пв}}$ – потенциально возможное количество ковшей; ($n_{\text{ne}} = n_{\text{ко}} = 7$) n_{ϕ} – фактическое количество ковшей ($n_{\phi} = 7 \dots n_{\text{пв}+1}$)

Таблица 2.

- ,	голица								
Сз	п кв	дф, т	D	Lф, тыс. км	KI	Dpф, дн.	D то,р, дн.	D р.г., дн.	Тр.г., ч.

0,86	6,00	320,93	1726,85	0,43	3,47	14,43	36,43	328,57	7885,79
1,00	7,00	374,42	1967,55	0,12	1,00	50,24	72,24	292,76	7026,23
1,14	8,00	427,91	2208,25	0,04	0,29	174,97	196,97	168,03	4032,61

Из таблицы 2 видно что каждый ковш составляет 14% от степени загрузки и превышение степени загрузки самосвала приведет к уменьшению срока эксплуатации за счет возникающих динамических нагрузок (D) и снижению ресурса несущей системы. Затраты на проведение ТО и Р возрастут. Но можно грузить и меньше — 6 ковшей, мы даже снизим регламентированное число дней для проведения ТО и Р, но значительно снизим число выполненного плана горных работ. Самосвал станет менее производительный, а предприятие несет убытки, что нерационально.

График, показывающий результаты годовой производительности самосвала, в зависимости от степени загрузки.

Определение оптимального числа ковшей экскаватора к вместимости грузовой платформы самосвала при перевозке полезных ископаемых.

Характеристика вскрышных пород	Песок смешанный с
	щебнем и галькой

Плотность горной массы $\rho = 1,56 \text{ т/м}^3$; коэффициент разрыхления $Kp \approx 1,2$; коэффициент экскавации $K \ni = 0,91$.

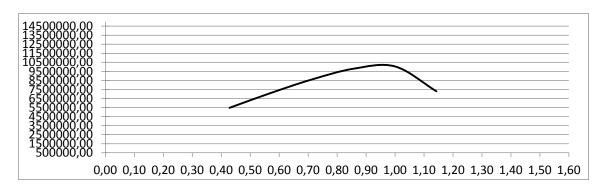
Коэффициент наполнения ковша:

$$K$$
 нк = K э * Kp = 0,91*1,2=1,05 , $n_{\text{ко}}$ = 7,32 \rightarrow 7; $n_{\text{кг}}$ = 9,43 \rightarrow 9, принимаем меньшее: 7

Фактическая масса груза:

$$q_{\Phi} = \frac{n_{\text{\tiny K}} V_{3} K_{\text{\tiny HK}} \rho_{\text{\tiny I}}}{K_{\text{\tiny D}}} = \frac{7 \cdot 34,96 \cdot 1,05 \cdot 1,56}{1,2} = 334,04 \text{ т}$$

Кузбасский государственный технический университет имения Т.Ф. Горбачева 21-24 апреля 2015 г., Россия, г. Кемерово


Расчет коэффициентов использования грузоподъемности и емкости кузова автосамосвала.

$$\gamma_{\rm rp} = \frac{n_{\rm K}}{n_{\rm KF}} = \frac{7}{9,43} = 0.74$$

$$\gamma_{\rm o6} = \frac{n_{\rm K}}{n_{\rm KO}} = \frac{7}{7,32} = 0.96$$

Таблица 3

				Lф,			D		
				тыс.		D pф,	то,р,	D р.г.,	
Сз	п кв	q ф, т	D	КМ	K1	ДН.	дн.	ДН.	Тр.г., ч.
0,86	6,00	286,32	1571,10	0,97	3,02	16,53	38,53	326,47	7835,23
1,00	7,00	334,04	1785,84	0,32	1,0	50,33	72,33	292,67	7024,15
1,14	8,00	381,76	2000,58	0,10	0,33	153,21	175,21	189,79	4555,02

Из таблицы 3 наблюдаем, практически такую же картину как и в случае с перевозкой вскрышных пород. Обратив внимание, что плотность угля различается в пределах 1,39-1,56 т/м³ для различных пластов, учетом выемки полезных ископаемых, и условия разрыхляемости (кусковатости) приходим к мнению, что самосвал БелАЗ 75710 преимущественно и рационально использовать для более плотных горных вскрышных пород, поскольку

 $\gamma_{\rm rp} = 0.74$ для перевозки угля в данном случае недостаточен, и возможности самосвала не используются в нужном направлении и тем самым прибыль от перевозочного процесса будет меньше, чем ожидается. Поэтому, для транспортного процесса полезных ископаемых используют самосвалы меньшей грузоподъемности от 90 тонн и выше.

Список источников:

- 1. Стенин Д. В. Обоснование влияния ресурса несущих систем и степени загрузки на производительность карьерных автосамосвалов. Автореферат диссертации, Кемерово 2006 г.
- 2. Дадонов М.В., Стенин Д. В. Методические указания по выполнению курсового проекта по дисциплине техническая эксплуатация карьерного транспорта, 2009г.