УДК 544.228 + 537.9 СИНТЕЗ, СТРУКТУРА И ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕР-ДЫХ РАСТВОРОВ La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄

^{1, 2}Ю.А. Деева, ²Т.И. Чупахина, ¹Н.В. Мельникова, ¹А.А. Мирзорахимов, ¹В.В. Горин

¹Уральский Федеральный университет имени первого Президента России Б.Н. Ельцина

²Институт химии твердого тела Уральского отделения Российской академии наук

г. Екатеринбург

Сложные оксиды La_{2-x}A_xNiO₄ типа K₂NiF₄, (A = Ca, Sr, Ba), имеющие тетрагональную структуру (пр. гр. I4/mmm (\mathbb{N} 139)) обладают комплексом функциональных свойств, обусловливающих их применение в различных областях науки и техники. La₂NiO₄ и твердые растворы на его основе являются первым гомологом структурного ряда Раддлесдена-Поппера La_{n+1}Ni_nO_{3n+1} и широко исследуются как возможные катодные материалы для твердотельных топливных элементов, поскольку обладают смешанной электронно-ионной проводимостью [1-3].

Настоящая работа посвящена синтезу твердых растворов $La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O_4$ по прекурсорной методике и получению керамических образцов на их основе, а также определению их кристаллохимических параметров и исследованию их свойств методом импеданс-спектроскопии.

Исходными реагентами для синтеза $La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O_4$ служили стехиометрические количества нитрата лантана, карбоната кальция и оксидов никеля и кобальта квалификации не ниже «осч». Нитраты растворяли в воде, оксиды – в небольшом избытке концентрированной азотной кислоты, после чего растворы смешивали. В полученный раствор добавляли трехкратный избыток органической добавки – цитрат аммония 2-замещенный. Процесс пиролиза осуществляли при 200 °C. Тонкодисперсный продукт, полученный после сгорания органической составляющей, выдерживали при 700 °C в течение 4 ч, затем при 950 °C в течение 6 ч, далее прессовали и прокаливали при 1200 °C.

При использовании в качестве органической добавки веществ, содержащих азот (степень окисления -3) процесс протекает в соответствии с реакцией $NH_4NO_3 + "CH" \rightarrow CO_2 + H_2O + N_2$. Параллельно под действием Ni^{2+} протекает реакция каталитического декарбоксилирования металл - цитратных комплексов. Происходит воспламенение реакционной массы, продуктом реакции является ультрадисперсный порошок. РЭМ-снимки порошков, полученных пиролизом композиций с применением двузамещенного цитрата аммония, приведены на рисунке 1.

Рис. 1. РЭМ-снимки продуктов разложения нитратно-карбоксилатных смесей а - смесь с цитратом аммония после пиролиза; б - смесь с цитратом аммония после обработки при 700°С

На рисунке 2 представлена дифрактограмма порошка композиции (б), обработанного при 700°С.

Рис. 2. Дифрактограмма продукта термического разложения реакционной смеси состава 1,8La(NO₃)₃ + 0,2Ca(NO₃)₂ + 0,8Ni(NO₃)₂ + 0,2Co(NO₃)₂ с цитратом аммония после обработки при 950°С. Стрелками отмечен непрореагировавший La₂O₃.

Очевидно, что при 700°С идет интенсивное формирование твердого раствора состава $La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O_4$, о чем свидетельствует наличие на дифрактограмме всех рефлексов основной фазы. Следовательно, использование цитрата аммония для синтеза $La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O_4$ подтверждает тот факт, что нитратно-карбоксилатный синтез является универсальной методикой.

Процесс фазообразования завершается при температуре 950-1000°С в течение 4-6 час. Состав полученных образцов контролировали при помощи автодифрактометра марки Shimadzu XRD-7000 S с выдержкой 5 секунд в точке. Полученные дифрактограммы обрабатывали по методу Ритвельда в программной среде в программной среде Fullprof 2016. Экспериментальная, теоретическая и разностная дифрактограммы оксида La_{1,8}Ca_{0,2}Ni_{0,8}Cu_{0,2}O₄ приведены на рисунке 3.

Рис. 3. Экспериментальная, теоретическая и разностная дифрактограммы La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O₄

На дифрактограмме порошка La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O₄, (рисунок 3) присутствуют только рефлексы основной фазы, примеси не обнаружены, что свидетельствует о завершении процесса фазообразования.

Кристаллохимические параметры сложного оксида La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O₄ приведены в таблице 1.

Таблица 1

Кристаллохимические параметры твердого раствора		
$La_{1,8}Ca_{0,2}Ni_{0,8}Co_{0,2}O_{4}$		

<u>Образец</u>	La _{1,8} Ca _{0,2} Ni _{1,8} Co _{0,2} O ₄
Параметры ячейки	
a = b, (Å)	3.82242
c, (A)	12.71501
$V, (A^3)$	185.777
Межатомные расстояния	
Ni/Co-O1(x4)	1.91121(8)
Ni/Co-O2(x2)	2.291(17)
La/Ca-O1(x4)	2.6021(17)
La/Ca -O2a(x4)	2.7534(32)

La/Ca -O2b(x1)	2.3004(167)
<u>t</u>	0.98
GII	0.3909

В работе [4] показано, что фазообразование твердых растворов на основе никелата лантана завершается при 1000°С. В температурном интервале 950-1100°С замещающий катион входит в структуру оксида, а спекание при 1200°С приводит к получению образца, в котором отсутствуют магистральные поры.

Рисунок 4 (I) представляет собой РЭМ-снимок поверхности таблетки образца La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄, отожженной при 950°С. Образец содержит магистральные поры. При 1200°С имеет место интенсивный процесс спекания. Диаметр таблетки резко уменьшается (с 20 мм до 15 мм), а РЭМ-снимок образца (II) свидетельствует об отсутствии магистральных пор.

Рис. 4. Поверхность керамических образцов La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄ I - Поверхность образца, полученного по прекурсорной технологии, обработанного при 950°C; II - Поверхность образца, полученного по прекурсорной технологии, обработанного при 1200°C;

Образец, полученный при 1200°С (рисунок 4 (II)) является однофазным и не содержит магистральных пор. Поверхность таблетки равномерная, представляет собой спеченные агломераты плотноупакованных кристаллов. Размер зерна колеблется в пределах 5 до 20 мкм.

Проанализированы результаты влияния частоты электрического поля на диэлектрические свойства материалов (рисунок 5).

Годограф импеданса ячейки с образцом представляет собой реальный диэлектрик с утечкой, т.е. емкость представляет емкость диэлектрика (геометрическую), а R - сопротивление «утечки».

На рисунке 6 приведены частотные зависимости диэлектрической проницаемости и тангенса угла диэлектрических потерь керамики La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄.

Рис. 5. Годограф импеданса ячейки с образцом La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄

Рис. 6. Спектры диэлектрической проницаемости и тангенса угла диэлектрических потерь керамики La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄

Керамика La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄ характеризуется значением вещественной части комплексной диэлектрической проницаемости Re ϵ ~140 и тангенса угла диэлектрических потерь tg δ ~ 0-40, почти не зависящим от частоты электрического поля в интервале от 10³ до 10⁷ Гц.

Таким образом, можно сделать вывод, что был получен газоплотный образец, состава La_{1,8}Ca_{0,2}Ni_{1,8}Co_{0,2}O₄, Данная керамика представляет собой реальный диэлектрик с утечкой. Значение диэлектрической проницаемости имеет довольно высокое значение порядка 10².

Работа выполнена при финансовой поддержке Государственного плана ИХТТ УрО РАН (№ АААА-А16-116122810209-5).

Список литературы:

1. *Krohns S.* Colossal dielectric constant up to gigahertz at room temperature / Lunkenheimer P., Kant Ch. et.al. – Appl. Phys. Lett. – 2009. – V. 94. – P. 122903 (1-3)

2. *Sippel P*. Dielectric signature of charge order in lanthanum nickelates / Krohns S., Thoms E., et al. – Eur. Phys. J. B. – 2012. – V. 85. – P. 235-243.

3. *Chen-Yang Shi* Structural, magnetic and dielectric properties of $La_{2-x}Ca_xNiO_{4+\delta}$ (x = 0, 0.1, 0.2, 0.3) / Zhong-Bo Hu, Yong-Mei Hao. – Journal of Alloys and Compounds. – 2011. – V. 509. – P. 1333-1337.

4. *Chupakhina T. I.* New Ways to Synthesize Multifunctional Ceramics La₂ $_x$ Sr_xNiO₄/ Gyrdasova O. I., Vladimirova E. V., Samigullina R. F. – XHX. - 2015.– T. 60. – N_{2} 10. – C. 1299–1307.

5. *Chupakhina T.I.* Synthesis, structural characteristics and dielectric properties of a new K_2NiF_4 -type phase $Sr_2Mn_{0.5}Ti_{0.5}O_4$ / Melnikova N.V., Gyrdasova O.I. – J. Alloys Compd. – 2016. – V.670. – P. 105-112.