УДК [549.678+544.023.52]:[544.463(549.678+54-384)]

СОСТАВ, СТРУКТУРА И МОРФОЛОГИЯ ТВЕРДОФАЗНЫХ СИ-СТЕМ КЛИНОПТИЛОЛИТ-КИСЛАЯ СОЛЬ

О.Н. Дабижа^{1,2}, к.х.н., доцент Т.П. Патею κ^1 , аспирант

¹ Забайкальский институт железнодорожного транспорта, ² Забайкальский государственный университет, г. Чита

Создание новых механически устойчивых и дешевых функциональных материалов с заданными свойствами на основе минеральных пород составляет актуальную теоретическую и практическую задачу. Особенностью структуры клиноптилолита являются большая удельная поверхность [1] и значительная пористость, которые обуславливают его ионообменные свойства [3]. Синергизм химического и механического модифицирования клиноптилолита открывает перспективу для осуществления контролируемых изменений структуры и физико-химических свойств минерального продукта. При этом механохимический синтез будет способствовать количественному накоплению дефектов в структуре материала. Высококремнистые клиноптилолитовые породы Холинского и Шивыртуйского месторождений могут выполнять роль нанопористого каркаса для ионных солей – молекул-«гостей». Кислые соли щелочных металлов перспективны в качестве наполнителей для цеолитов, так как при температурах 80–250 °С в солях наблюдаются суперионные фазовые переходы с высокой протонной проводимостью [2].

Цель настоящей работы: исследование химического состава, структуры и морфологии твердофазных систем клиноптилолит-кислая соль для дальнейшей разработки на их основе электропроводящих материалов.

Объектами исследования выбраны механокомпозиты, полученные совместной механоактивацией (MA) смеси тонкодисперсной фракции (r < 50 мкм) воздушно-сухих клиноптилолитовых пород Холинского и Шивыртуйского месторождений и ионных солей: (NH₄)₂HPO₄, K₂HPO₄, KHSO₄ при массовом соотношении 1:1; 2:1 и 3:1 в течение 3; 5 и 7 минут в истирателе вибрационном чашевом ИВЧ-3.

Элементный состав и морфологию исследуемых образцов изучали на аналитическом комплексе РЭМ JSM-6510LVJEOL (Япония) с системой микроанализа — энергодисперсионным рентгеновским спектрометром модели INCA Energy 350, Oxford Instruments (Великобритания). Пробоподготовку для анализа осуществляли путем нанесения образца в виде порошка на двусторонний электропроводящий углеродный скотч, с последующим напылением на основу платины.

Силикатный модуль M_c модифицированных клиноптилолитовых материалов рассчитывали как отношение мольных содержаний оксида кремния и оксида алюминия.

Оценку распределения в образцах крупных агрегатов частиц в долях от единицы проводили точечным методом по микрофотографиям, полученным с помощью РЭМ. Диаметры Ферета агрегатов частиц рассчитывали как их максимальный линейный размер.

В таблице 1 представлен усредненный элементный состав исследуемых композитов клиноптилолит – кислая соль.

TD C 1	T 7	U	U		
Гаолина Г	- Уcne	лненныи	элементныи	состав	композитов

Области	ω, мас. %										
Образцы	Na	Mg	Al	Si	P	S	K	Ca	Fe	Cu	Zn
KS-X(1:1)-7	1,17	_	5,87	29,81	1	25,59	34,74	1	0,47	1,41	0,94
KS-X(1:2)-3	1,80	_	8,54	44,94	-	15,73	23,82	1,57	0,90	1,57	1,12
KS-X(1:2)-7	1,48	_	7,19	39,32	_	16,28	28,75	1,27	1,06	2,96	1,69
КЅ-Ш(1:1)-5	1,06	0,85	6,77	30,66	_	21,35	29,6	2,11	2,33	3,17	2,11
КЅ-Ш(1:2)-7	1,74	0,87	9,57	41,3	_	16,52	21,09	2,61	2,39	2,17	1,74
КЅ-Ш(1:3)-5	2,33	1,17	13,52	57,11	_	6,76	10,96	3,03	2,8	1,4	0,93
KP-X(1:2)-3	2,25	_	7,17	37,5	14,96	_	35,25	1,64	1,23	_	_
KP-X(1:2)-7	1,99	_	8,35	42,74	11,73	_	29,42	1,59	0,99	1,79	1,39
NH ₄ P-Ш(1:1)-7	1,86	0,93	9,51	38,75	36,89	_	3,25	3,02	2,32	1,86	1,62
NH ₄ P-Ш(1:2)-7	1,89	0,95	11,58	48,7	23,88	_	3,78	3,31	2,6	1,89	1,42
NH ₄ P-Ш(1:3)-7	2,08	0,93	12,04	51,16	18,29	_	4,17	3,94	3,47	2,31	1,62
NH ₄ P-X(1:1)-5	1,58	_	7,45	37,7	42,21	1	4,74	1,35	0,9	2,26	1,81
NH ₄ P-X(1:2)-7	2,11	_	10,07	50,82	25,53		5,39	1,87	0,94	1,87	1,41
NH ₄ P-X(1:3)-7	2,37	0,47	11,14	54,5	20,38	1	5,92	1,66	0,95	1,66	0,95

Примечание – содержания N и H методом рентгеноспектрального анализа не определяются.

Полученные результаты свидетельствуют об уменьшении содержания ионообменных катионов (Na $^+$, K $^+$, Ca $^{+2}$) в образцах на основе клиноптилолитовой породы Холинского месторождения и K_2HPO_4 (или $KHSO_4$) с повышением времени MA от 3 до 7 мин.

В таблице 2 приведены результаты расчета силикатного модуля для композиционных материалов клиноптилолит-кислая соль. Высокие значения силикатного модуля свидетельствуют об увеличении числа поверхностных активных кислотных центров, а также о повышении термической стабильности материалов. Среди полученных механохимическим методом образцов наибольщими значениями силикатного модуля выделяются следующие композиты на основе ЦСП Холинского месторождения:

KS-X(1:2)-3, KS-X(1:2)-7, KP-X(1:2)-3 и KP-X(1:2)-7.

соль

Образцы	M_{c}	Образцы	M_{c}
KS-X(1:1)-7	9,75	NH ₄ P-Ш(1:1)-7	7,83
KS-X(1:2)-3	10,11	NH ₄ P-Ш(1:2)-7	8,08
KS-X(1:2)-7	10,50	NH ₄ P-Ш(1:3)-7	8,16
КЅ-Ш(1:1)-5	8,70	NH ₄ P-X(1:1)-5	9,72
КЅ-Ш(1:2)-7	8,29	NH ₄ P-X(1:2)-7	9,69
КЅ-Ш(1:3)-5	8,11	NH ₄ P-X(1:3)-7	9,40
KP-X(1:2)-3	10,05	KP-X(1:2)-7	9,83

Таблица 2 – Силикатный модуль для композитов клиноптилолит-кислая

Микрофотографии РЭМ образцов приведены на рисунке 1 а-е. Анализ рисунков 1 показал, что с увеличением содержания ионной соли повышается агрегация частиц в механокомпозитах клиноптилолит-кислая соль. Установлено, что композиты имеют сложный рельеф поверхности, образованный кристаллами и агрегатами неизометрической формы, а также полидисперсную структуру.

Минимальный и максимальный диаметры Ферета агрегатов частиц, представлены на рисунке 2.

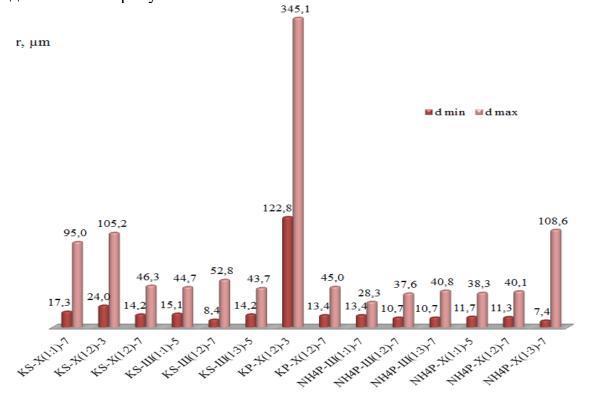


Рисунок 2 — Минимальный и максимальный диаметр Ферета агрегатов частиц на микрофотографиях РЭМ.

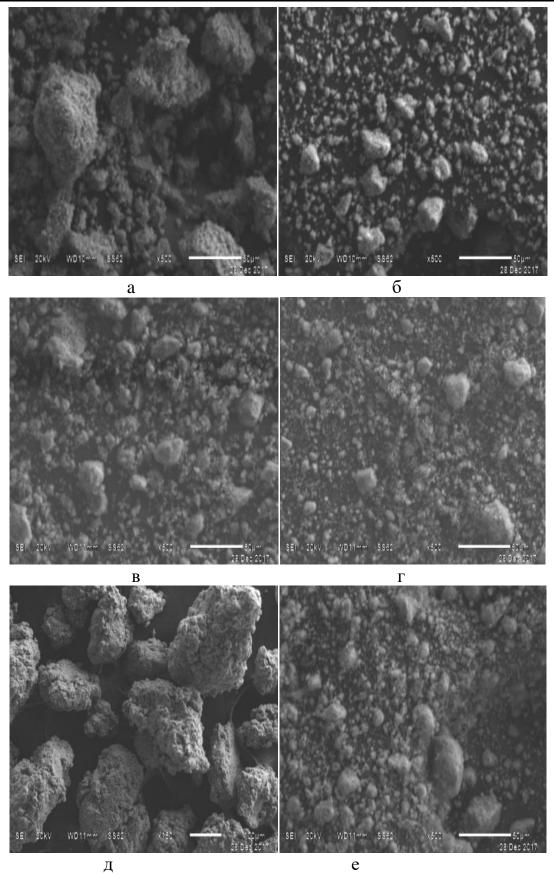


Рисунок 1 - Микрофотографии образцов, полученных в результате механохимической активации: а) KS-X(1:1)-7;б) KS-X(1:2)-7;в) NH₄P-Ш(1:1)-7; г) NH₄P-Ш(1:2)-7; д) KP-X(1:2)-3; г) KP-X(1:2)-7. Масштабная линия составляет 50 (а-г; е) и 100 мкм (д).

Образцы на основе клиноптилолитовых пород Шивыртуйского месторождения отличаются более высокодисперсной структурой, чем аналоги на основе Холинского месторождения. Анализ рисунков 1 д-е и 2 показал, что с увеличением времени МА уменьшается относительный размер частиц в твердофазной системе клиноптилолитовая порода Холинского месторождения — K_2HPO_4 в соотношении 2:1.

По распределению крупных агрегатов частиц выделяется композит KP-X(1:2)-3, так как соль K_2HPO_4 сильно гигроскопичная и легко поглощает влагу из атмосферы, а непродолжительное механическое воздействие приводит к агрегации высокодисперсных частиц (рисунок 3).

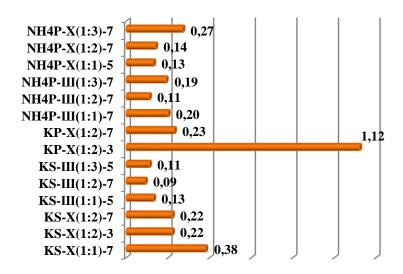


Рисунок 3 —Оценка распределения агрегатов частиц на поверхности образцов.

Таким образом, установлено, что с увеличением содержания соли в механокомпозитах повышается агрегация частиц, а увеличение длительности механического воздействия способствует повышению дисперсности структуры. Наиболее высокодисперсной структурой обладают образцы на основе ЦСП Шивыртуйского месторождения. Высокая поверхностная активность наблюдается у образцов на основе ЦСП Холинского месторождения, а именно KS-X(1:2)-3, KS-X(1:2)-7 и KP-X(1:2)-3.

Список литературы:

- 1. *Атноцкая Л.Ю*. Контроль удельной поверхности цеолита методом Кармана-Козени в процессе механической активации / Л.Ю. Атноцкая, А.Г. Бебия, И.В. Милюкова // Ползуновский альманах. -2013. -№ 1. C. 95–97.
- 2. Лаврова Γ .В. Влияние природы ионной соли на транспортные свойства протонных композиционных электролитов для топливных элементов / Г.В. Лаврова, В.Г. Пономарева // Химия в интересах устойчивого развития. − 2001. − № 9. − С. 263−267.
- 3. *Панасюгин А.С.* Ионообменные свойства клиноптилолита, модифицированного ферроцианидами металлов / А.С. Панасюгин, В.С. Комаров, А.И. Радько и др. // Весці АН Беларусі. Сер. хім. навук. − 1993. − № 2. − С. 30–34.