ПЫЛЬ МЕТАЛЛО-АБРАЗИВНАЯ: ОБРАЗОВАНИЕ И ОПАСНОСТЬ

И.В. Лузгин, студент группы 41Э-15, IV курс Научные руководители: Новиков А.В. старший преподаватель кафедры "Общая и Инженерная Экология", РГАУ-МСХА им. К.А. Тимирязева, Сумарукова О.В. старший преподаватель кафедры "Общая и Инженерная

Экология", РГАУ-МСХА им. К.А. Тимирязева.

Колледж многоуровневого профессионального образования Филиал Российской академии народного хозяйства и государственной службы при Президенте Российской Федерации в г. Москва г. Москва

Что такое абразивная пыль?

Металло-абразивная пыль — это пыль (порошок), который выделяется в процессе выполнения шлифовальных и полировочных работ. Абразивные материалы характеризуются способностью эффективного механического воздействия. С их помощью удаляют загрязнения, снимают налеты, производят очистку поверхностей от ржавчины и краски. Рабочим элементом являются абразивные гранулы, которые могут иметь разные формы и размеры. Один из видов таких гранул представляет абразивная пыль, которая может иметь заводское происхождение или же быть результатом переработки, отходом.

Общие сведения об абразивной пыли

Пыль может иметь разные характеристики и происхождение, но в большинстве случаев это нежелательный продукт переработки металлических и деревянных изделий. Как правило, абразивный порошок выделяется в процессе выполнения шлифовальных работ. Пыль может образовываться и в бытовой обработке поверхностей, и в больших объемах при осуществлении операций в промышленных масштабах. В обоих случаях металлическая абразивная пыль образуется в результате разрушения основного обрабатывающего материала. Чаще всего такие отходы оставляют абразивные диски при механическом воздействии на целевую обрабатываемую поверхность. При этом не всегда пыль является металлической – обычно это комбинированные составы, которые также включают частицы абразивов от горных пород.

Данный вид отхода зарегистрирован в ФККО (2014) под кодом «36122102424 – пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50 %».

Состав материала

Обработке абразивами в основном подвергаются изделия из черного металла. Это могут быть и будущие детали для станков, и компоненты автомобилей, а также стройматериалы. Основу любого состава такой пыли формирует железо — порядка 30 %. Вторым по объему содержания обычно выступает алюминия оксид — глинозем. К второстепенным составным

элементам абразивных порошков относятся фосфор, мышьяк, никель, марганец, хром и т. д. Многое зависит и от того, с какой рабочей поверхностью взаимодействовала пыль абразивная. Состав выделяемой смеси нередко включает элементы окалины, ржавчины и старые лакокрасочные покрытия. Собственно, для борьбы с подобными наслоениями зачастую и применяется техника абразивного удаления.

Виды абразивной пыли

Классификация базируется на нескольких принципах разделения абразивных частиц. Во многом они зависят от способа применения обрабатывающего материала. К примеру, если используется шлифовальный аппарат с насадкой в виде круга, то получаемую пыль можно назвать кремниевой. Также практикуется использование пескоструйных машин, которые изначально применяют измельченные крупицы абразива. Они могут отличаться по размерам и формам, но их задача остается прежней — удаление с поверхности ненужных покрытий или обеспечение гладкости заготовки. Конечным продуктом переработки в данном случае окажется металлическая абразивная пыль, но уже в деформированном виде. Важно отметить, что, в отличие от кремниевых составов, такую пыль можно использовать в дальнейших операциях, как применяют и металлические порошки для шлифования.

Характеристики отхода

Параметры и свойства формируемой пыли определяются условиями выполнения операций и применяемыми материалами. Например, в работе на машиностроительных предприятиях изготавливаются станки, требующие высокоточной доводки поверхностей до нужного геометрического формата. В такой обработке между прокатываемыми заготовками и валками образуется крупнодисперсная пыль, размеры которой могут варьироваться от 5 до 10 мкм. Обычно она получается в результате испарения той самой окалины, составляющей порядка 20 % в массе. В среднем на таких предприятиях выброс пыли составляет порядка 200 г на 1 т обработанного металлопроката. При выполнении шлифовальных операций в менее масштабных объемах образуемая абразивная пыль имеет мелкофракционный характер. Такие пылинки по своему диаметру имеют 0,5-1,5 мкм. Выделение мелких частиц опасно для человека также как и крупных. Во-первых, крупная фракция облегчает операции пылеудаления. Во-вторых, уже с медицинской точки зрения, мелкая пыль опаснее для органов дыхания. Теперь стоит подробнее разобрать вопрос о том, почему нужно бороться со свободным выделением абразивных отходов в процессе обработки.

Опасность абразивной пыли

Без эффективной системы пылеудаления выработка металлической пыли неизбежно приведет к ее распространению в воздухе рабочего пространства. В таких условиях нередко развиваются профессиональные заболевания слесарей-сборщиков. К таким недугам можно отнести пневмокониоз, пылевой бронхит, астму. Развитие болезней может стать следствием регулярного раздражения легких абразивными частицами и от

20-21 декабря 2018

инструментов обработки, и от элементов структуры заготовок. Поэтому так важно изначально организовать системы, которые обеспечат эффективное удаление абразивной пыли прямо в рабочей среде. В зависимости от масштабов и условий работы такие системы организуются по разным принципам. Это может быть и типовой промышленный пылесос, подключенный к шлифовальному аппарату, и промышленная вентиляция.

Исходные данные для расчета:

Удельное выделение пыли составляет 0.013 г/с (при диаметре шлифовального круга = 150 мм); заточный станок работает 8 часов в день, 365 дней в году (2920 часов); коэффициент эффективности воздухоприемника принимается равным 0.9; степень очистки воздуха в воздухоочистительной установке принимается равным 0.99.

Расчет количества абразивной пыли, собираемой в бункере очистительной установки, M_n , т/год, производится по формуле:

$$M_n = \sum C^i \cdot 3600 \cdot T^i \cdot K_{so} \cdot \eta,$$

где M_n — масса абразивной пыли, собираемой в бункере очистительной установки, т/год;

 C^{i} – удельное выделение пыли на станке i-той марки, г/сек;

3600 – переводной коэффициент, учитывающий число секунд в часе;

 T^{i} – число часов работы заточного станка i-той марки в год;

 K_{90} – коэффициент эффективности воздухоприемника, доли от 1;

 η – степень очистки воздуха в воздухораспределительной установке, доли от 1.

$$M_{\rm n} = \sum 0.013 \cdot 3600 \cdot 2920 \cdot 0.9 \cdot 0.99;$$
 $M_{\rm n} = 6521,903 \; \text{т/год}.$

Способы удаления и обезвреживания

Мелкие абразивные элементы от обрабатываемого с помощью плоскошлифовальных станков материала обычно собирают и отводят в специальные отстойники. Для этого достаточно продумать канал пути движения пыли. Чаще всего задача решается с помощью плоскостей, смачиваемых водой. Водяная пелена сносит порошок в отстойник, оснащенный фильтром. Далее вновь уже чистая вода смывает порции оседающей пыли. Для большей эффективности можно обеспечить канал слива системой вентиляции, которая предотвратит и случайный разлет мельчайших частиц. В строительстве чаще используют уже упомянутый пылесос для абразивной пыли, который в момент выделения частиц засасывает их в специальную емкость, не давая разлетаться. Более производительные системы борьбы с отходами абразивной обработки также предполагают использование воздушных потоков. Например, в выработке потоков может быть задействован эжектор, который устанавливается в центре корпуса сепаратора.

Заключение

Выработка абразивных частиц является неизбежным явлением не только в процессах шлифования и полировки. Даже типовая резка металла «болгаркой» способствует образованию таких элементов. При этом не всегда можно предусмотреть систему, благодаря которой пыль абразивная удалялась бы автоматически. Особенно в бытовых условиях при выполнении разовых ремонтных операций специально для этого приобретать тот же пылесос нецелесообразно. В таких случаях следует продумывать в первую очередь средства индивидуальной защиты органов дыхания. Что касается защиты поверхностей помещения, то будет нелишним перед началом работы покрыть их пленкой. И в обязательном порядке следует организовать вентиляцию помещения.

Используемые источники

http://fb.ru/article/274175/