УДК 504.4.062.2

ИЗМЕНЕНИЯ ГИДРОЛОГИЧЕСКОГО РЕЖИМА РЕКИ ТУРА: СОВРЕМЕННОЕ ОБМЕЛЕНИЕ И ЕГО ПОТЕНЦИАЛЬНЫЕ ПОСЛЕДСТВИЯ

Р.Е. Фролов, студент гр. ИЗОСб-21-1, III курс Научный руководитель: А.А. Загорская, ст. преподаватель кафедры ТБ Тюменский индустриальный университет г. Тюмень

Река Тура, являясь одним из важных водных путей и природных артерий региона всегда была в центре внимания исследователей общества с разных сторон. Но, в последние десятилетия происходит тревожное явление - современное обмеление этой реки.

Эти изменения в гидрологическом режиме несут с собой потенциальные последствия, которые оказывают влияние на экосистемы, экономику и водные ресурсы региона.

Исследование изменений в гидрологическом режиме реки Туры становится актуальным, так как оно может пролить свет на множество важных аспектов. В данной статье мы проведем анализ современных изменений в гидрологическом режиме реки Туры, рассмотрим факторы, способствующие обмелению, и проанализируем потенциальные последствия этого процесса.

Целью данного исследования является предоставление глубокого понимания современных изменений в гидрологическом режиме реки Туры и их влияния на окружающую среду и общество.

Река Тура, находящаяся в городе Тюмени, является значимым водным образованием. Ее исток происходит в результате слияния нескольких ручьев, которое находится в 4 километрах к юго-западу от железнодорожной станции Хребет-Уральский. Более половины бассейна реки покрыто лесом, а в верхней его части преобладают кристаллические горные породы, в то время как в низовьях встречаются осадочные. Река Тура играет ключевую роль в этой местности, поскольку обеспечивает не только снабжение пресной водой, но также значительно влияет на транспортные и экологические системы

Гидрологический режим реки Туры обусловлен рядом ключевых параметров, которые играют значительную роль в анализе ее поведения и воздействия на окружающую среду. Среди них основное значение придается:

- 1. Расходу воды: это количество воды, проходящее через определенное сечение реки в определенный период времени. Значение данного параметра подвержено сезонным и годовым колебаниям, зависящим от количества осадков, таяния снега и других факторов.
- 2. Уровню воды: измеряется относительно эталонной отметки и может варьироваться в зависимости от климатических условий и влияния человеческой деятельности.

3. Сезонным изменениям: река Тура замерзает в ноябре и открывается в начале апреля, при этом в отдельные годы возможны заторы льда. Питание преимущественно состоит из снега и дождевых осадков. Период половодья длительный, длится около 2,5 месяцев, с резким подъемом уровней и затяжным спадом.

В течение года водный режим реки характеризуется четырьмя фазами, что характерно и для многих других рек в данном регионе.

- 1. высокое весеннее половодье;
- 2. летне-осенняя межень (с низшим уровнем воды, как правило, с августа по октябрь);
 - 3. незначительные по высоте паводки во время осенних дождей;
- 4. устойчивая низкая зимняя межень, продолжающаяся в среднем 140—160 дней.

Зимняя межень устанавливается во второй половине ноября, а при наличии осенних дождевых паводков — в предзимний период; низший уровень воды достигается в январе-марте.

Антропогенный фактор: кроме природных факторов, гидрологический режим реки Туры также зависит от вмешательства человека, такого как строительство плотин, водоотводных систем и водопользования. Эти внешние факторы могут существенно влиять на параметры гидрологического режима.

На рис.1 представлен график изменения уровня воды в реке Тура за 2023 год.

На графике видно, что с начала года по октябрь уровень воды большую часть времени находился на отметке ниже нуля. Средний уровень воды составил 74 см [1].

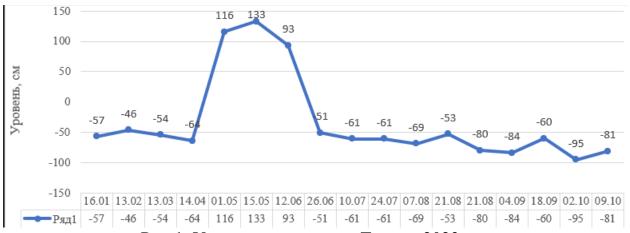


Рис 1. Уровень воды в реке Тура за 2023 год

В таблице 1 представлены основные потребители воды из поверхностных источников в период с 2020—2022 гг. Наиболее крупными потребителями поверхностных водных ресурсов по прежнему оставались Тюменские ТЭЦ-1 и ТЭЦ-2 — филиалы Энергосистемы «Западная Сибирь» ПАО «Фортум» (73.14% от общего объема забранной поверхностной воды), ООО «Тюмень Водоканал» (10.95 %) и ООО «Запсибнефтехим» (9.99 %) [2].

	9,021 110 11	• 	
Водопользователь	Объем по годам, млн м ³ /год		
	2020	2021	2022
Тюменская ТЭЦ-1 - филиал Энергосистемы «Западная Сибирь ПАО «Фортум»»	235.40	208.68	223.14
ООО «Тюмень Водоканал»	43.79	42.25	35.28
ООО «Запсибнефтехим»	29.14	32.32	32.21
Тюменская ТЭЦ-2 – филиал Энергосистемы «Западная Сибирь» ПАО «Фортум»	9.07	11.59	15.56
ПАО «СУЭНКО» филиал «Тепло Тюмени»	4.65	4.6	4.39
ОАО «Волоканал», г. Ишим	2.65	2.34	2.06

Таблица 1. Основные потребители воды из поверхностных источников

Главная причина — отсутствие осадков зимой, весной и летом в Тюменской области, ведь река Тура относится к типу водоемов с весенним половодьем, весенне-осенними дождевыми паводками. Кроме того, в наполнении реки важную роль играют снеговые воды. Доля талых вод в суммарном стоке составляет почти 50%, а подземных — 28%.

Сравнение данных о текущем состоянии с историческими данными. На рис.2 представлен график сравнения осадков, которые выпадали в Тюмени в 2002 и 2022 году. Из него мы видим, что в 2022 году осадков выпало немного больше [3].



Рис.2 Сравнение осадков за 2002 и 2022 год

1. Ухудшение экосистемы: обмеление реки может привести к снижению количества воды в реке и изменению ее гидрологического режима. Это может негативно сказаться на различных видах растений, животных и микроорганизмов, которые зависят от реки и ее водных ресурсов для своего выживания и развития.

- 2. Угроза водоснабжению: река может служить источником питьевой или хозяйственной воды для близлежащих населенных пунктов. Обмеление реки может привести к ухудшению качества воды, уменьшению ее объема и ограничению доступа к водным ресурсам.
- 3. Экономические последствия: река Тура может иметь экономическое значение как источник воды для сельского хозяйства, промышленности или других отраслей. Обмеление реки может снизить доступность воды для этих секторов и привести к сокращению производства.
- 4. Увеличение риска пожаров: Обмеление может привести к снижению влажности в окружающих землях. Это может создать условия для увеличения риска возникновения пожаров в речных бассейнах и сопредельных территориях. Повышенный риск пожаров может угрожать лесным покровам, сельскохозяйственным угодьям, жилым зонам и инфраструктуре.

Список литературы:

- 1. AllRivers.info: Уровень воды в реке Тура, Тюменская область URL: https://allrivers.info/gauge/tura-tumen/waterlevel (дата обращения: 08.10.2023). Текст: электронный.
- 2. Официальный сайт Администрации Тюменской области URL: https://admtyumen.ru/ (дата обращения: 08.10.2023). Текст: электронный.
- 3. PogodalKlimat.ru: История погоды в Тюмени URL: http://www.pogodaiklimat.ru/history/28367_2.htm (дата обращения: 08.10.2023). Текст: электронный.