IV Всероссийская научно-практическая конференция «ЭНЕРГЕТИКА И ЭНЕРГОСБЕРЕЖЕНИЕ: ТЕОРИЯ И ПРАКТИКА» 105-1 19-21 декабря 2018 г.

УДК 62-664.3

Д.Б. АЛТЫНБАЕВА, студент (ТПУ) К.Т. ИБРАЕВА, аспирант (ТПУ) Р.Б. ТАБАКАЕВ, научный сотрудник (ТПУ) г. Томск

ВЛИЯНИЕ КАРБОНАТОВ МИНЕРАЛЬНОЙ ЧАСТИ ТОПЛИВА НА ОПРЕДЕЛЕНИЕ ЭЛЕМЕНТНОГО СОСТАВА

Одной из наиболее важных характеристик топлива является его элементный состав. Информация о количестве содержащихся в органической части топлива таких элементов, как углерод (С), водород (Н), азот (N), сера (S) и кислород (О), необходима для конструктивного расчёта энергетических объектов [1]. Например, на основе данных элементного состава определяются теоретически необходимое количество воздуха, объем и энтальпии дымовых газов [2, 3].

Необходимо отметить, что пробы топлив, рассматриваемые в рамках одного и того же месторождения, различаются по элементному составу, так как добываются с различных глубин и частей месторождения [4].

Как известно, топливо состоит из органической и минеральной частей. При этом наличие минеральной части может оказывать влияние на результаты определения элементного состава и прочих характеристик. Например, карбонаты топлива, при температуре свыше 815°C, разлагаются на оксиды металлов и углекислый газ, который вносит ошибку при изучении топлива хроматографическими методами.

В связи с этим целью настоящей работы является исследование влияния карбонатов минеральной части топлива на результаты определения элементного состава при помощи анализатора VarioMicroCube (Elementar, Германия).

В работе рассмотрен образец торфа (месторождение Суховское, Томская область), седиментально разделенный на фракции в жидкостях с различной плотностью (согласно рекомендациям [5]). Пробы были высушены до воздушно-сухого состояния, значения их влажности и зольности определены согласно ГОСТ Р 52911-2013 и Р 55661-2013 соответственно (Табл.1).

Для определения элементного состава полученных проб использовался анализатор «VarioMicroCube». Прибор позволяет одновременно определить значения углерода (С), водорода (Н), азота (N) и серы (S) в исследуемом сырье.

Табл. 1. Выход и характеристики проб торфа после седиментального разделения

IV Всероссийская научно-практическая конференция «ЭНЕРГЕТИКА И ЭНЕРГОСБЕРЕЖЕНИЕ: ТЕОРИЯ И ПРАКТИКА» 105-2 19-21 декабря 2018 г.

Проба	Исходная	Плотность, кг/м ³					
		≤1400	1400-1600	1600-1800	1800-2280	2280-2860	
Влажность, W ^a , %	8,7	10,6	10,7	10,6	5,0	4,2	
Зольность, A ^d , %	22,8	9,5	13,5	19,8	38,6	46,0	
Выход, %	100,0	0,4	36,6	40,4	6,2	16,4	

Количество кислорода (О) устанавливается по формуле:

$$O^{d} = 100\% - (C^{d} + H^{d} + N^{d} + S^{d} + A^{d}),\%$$
 (1)

Принцип работы прибора заключается в сожжении анализируемой пробы в окислительной трубке, восстановление образовавшейся при этом газовой смеси протекает в трубке восстановления. После этого восстановленная газовая смесь разделяется в хроматографической колонке и анализируется детектором по теплопроводности (ДТП). Параметры анализа: температура трубки сожжения составляет 1150°C, трубки восстановления 850°C. Результаты определения элементного состава седиментально разделённых проб торфа представлены в табл. 2.

Табл.2. Элементный состав торфа, полученный на анализаторе

Проба	Исходная	Плотность, кг/м ³						
		≤1400	1400-1600	1600-1800	1800-2280	2280-2860		
C ^d , %	37,06	50,73	46,18	39,65	23,51	21,32		
H ^d , %	3,54	6,53	4,99	3,97	2,39	1,58		
N ^d , %	2,41	2,11	3,73	2,47	1,37	0,96		
S ^d , %	0,08	0,04	0,06	0,00	0,01	0,08		
O ^d , %	34,11	31,09	31,54	34,11	34,12	30,06		

Определение содержания диоксида углерода (CO_2^d) карбонатов произведено ускоренным методом согласно ГОСТ 13455-91. Полученные значения CO_2^d для исходной пробы составили 11,95%, для пробы с плотностью менее 1400 кг/м³ – 2,73%, 1400-1600 кг/м³ – 4,76%, 1600-1800 кг/м³ – 8,84%, 1800-2280 кг/м³ – 23,63% и 2280-2860, кг/м³ – 27,28%. Учитывая столь высокие значения CO_2^d и температуру анализа, превышающую значение температуры разложения карбонатов, можно прийти к выводу о необходимости их учёта в результатах определения элементного состава. Пересчёт данных анализа (табл.2) с учётом содержания диоксида углерода карбонатов осуществляется по формулам (3) для углерода и (4) для кислорода:

$$C_{CO_2}^d = C^d - \Delta C^d, \%, \tag{3}$$

где $\Delta C^d = CO_2 \frac{M(C)}{M(CO_2)}$ — содержание углерода в углекислом газе, %; CO_2 — количество диоксида углерода в карбонатах, %; M(C) — молярная масса углерода, г/моль; $M(CO_2)$ — молярная масса углекислого газа, г/моль; C^d — количество углерода по данным анализатора (табл.1), %; $C^d_{CO_2}$ — количество углерода с учётом карбонатов топлива, %.

$$O_{CO_2}^d = O^d - \Delta O^d, \%, (4)$$

где $\Delta O^d = CO_2 \frac{M(O_2)}{M(CO_2)}$ – содержание кислорода в углекислом газе, %; $M(O_2)$ – молярная масса кислорода, г/моль; O^d – содержание кислорода по данным анализатора (табл.1), %; $O^d_{CO_2}$ – количество кислорода с учётом карбонатов топлива, %.

Сравнение результатов определения элементного состава прибором и с учётом карбонатов приведено на рис.1. Значения содержания водорода (H), азота (N) и серы (S) не зависят от содержания карбонатов, так как эти элементы не входят в их состав.

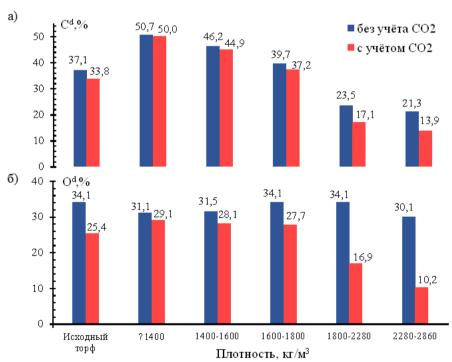


Рис.1. Сравнение результатов определения углерода (а) и кислорода (б) с учётом и без учёта содержания карбонатов

Из рис.1 видно, что не учёт содержания карбонатов в топливе от 2 до 27% может привести к ошибке определения доли углерода от 1 до 7% и кислорода от 2 до 20% (при пересчёте на сухое состояние топлива).

Теплоту сгорания твёрдого топлива можно определить посредством расчёта по формуле Д.И. Менделеева:

$$Q^{daf} = 340C^{daf} + 1030H^{daf} - 109(O^{daf} - S^{daf}), кДж/кг,$$
 (5)

где C^{daf} , H^{daf} , N^{daf} , S^{daf} , O^{daf} - количества элементов в пересчёте на сухую беззольную массу, %.

Пересчёт без учёта наличия карбонатов с сухого состояния топлива (d) на сухое беззольное (daf) проводился в соответствии с ГОСТ 27313-2015:

$$C^{daf} = C^{d} \frac{100}{100 - A^{d}}, \%, \tag{6}$$

Пересчёт для остальных элементов выполнен аналогично (6) (табл.3). Пересчёта топлива с сухой (d) на сухую беззольную (daf) массу, с учётом карбонатов осуществлялся согласно [4] следующим образом:

$$C^{\text{daf}} = C^{\text{d}} \frac{100}{100 - (A^d + CO_2^d)}, \%, \tag{7}$$

Пересчёт для остальных элементов выполнен аналогично (7) (табл.3).

Табл. 3. Элементный состав сухой беззольной массы проб

Проба	Исходная	Плотность, кг/м ³					
		≤1400	1400-1600	1600-1800	1800-2280	2280-2860	
C ^{daf} ,%	51,80/48,01	56,95/56,06	54,91/53,39	52,18/49,44	45,17/38,29	51,93/39,48	
H ^{daf} ,%	5,43/4,59	7,44/7,22	6,11/5,77	5,56/4,95	6,33/3,89	5,91/2,93	
N ^{daf} ,%	3,69/3,12	2,40/2,33	4,56/4,31	3,46/3,08	3,63/2,23	3,59/1,78	
S ^{daf} ,%	0,12/0,10	0,05/0,04	0,07/0,07	0,00/0,00	0,03/0,02	0,30/0,15	
O ^{daf} ,%	38,96/44,18	33,16/34,35	34,35/36,46	38,79/42,53	44,85/55,57	38,26/ 55,67	

Примечание: в числителе приведены значения с учётом карбонатов, входящих в состав минеральной части топлива, в знаменателе - без учёта.

Сравнение значений теплоты сгорания топлив с учётом и без учёта карбонатов представлена на рис. 2, из которого видно, что разница теплоты сгорания для проб с плотностью $2280\text{-}2860~\text{кг/m}^3$ составила 9,2 МДж/кг, для $1800\text{-}2280~\text{кг/m}^3-6,0$ МДж/кг, для исходной -2,7 МДж/кг, для $1600\text{-}1800~\text{кг/m}^3-2,0$ МДж/кг. У проб с плотность менее $1600~\text{кг/m}^3$ теплота сгорания отличается не более чем на 1~МДж/кг.

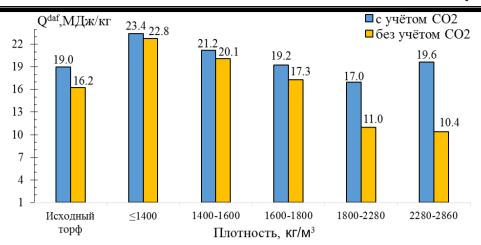


Рис. 2. Сравнение теплоты сгорания проб

Заключение

В работе приведены результаты определения элементного состава горючей части исходного торфа и проб, полученных в ходе его седиментального разделения в жидкостях с различной плотностью. Показано, что не учёт содержания карбонатов в минеральной части торфа от 2 до 27% может привести к ошибке определения доли углерода от 1 до 7 % и кислорода от 2 до 20% (при пересчёте на сухое состояние топлива). Ошибочные данные влияют на конструкторский расчет энергетических объектов. Например, при расчёте теплоты сгорания топлива не учёт наличия диоксида углерода (CO_2^d) карбонатов от 5 до 30%, приводит к относительной погрешности расчёта теплоты сгорания горючей части топлива (\mathbf{Q}^{daf}) от 10 до 47%.

Исследование выполнено при поддержке РФФИ (проект № 18-38-00648).

Список литературы:

- 1. Николаева В.И., Буваков К.В., Табакаев Р.Б. Методы исследования свойств твердых топлив: учебное пособие. Томск: Издательство Томского политехнического университета, 2003. 44 с.
- 2. Тепловой расчет котлов (Нормативный метод). СПб: Издательство НПО ЦКТИ, 1998. 256 с.
- 3. Фурсов И.Д., Коновалов В.В. Конструирование и тепловой расчет паровых котлов: учеб. пособие для студентов вузов. Барнаул: Изд-во АлтГТУ, 2001. 191 с.

IV Всероссийская научно-практическая конференция «ЭНЕРГЕТИКА И ЭНЕРГОСБЕРЕЖЕНИЕ: ТЕОРИЯ И ПРАКТИКА» 105-6 19-21 декабря 2018 г.

- 4. В.С. Вдовченко, М.И. Мартынова, Н.В. Новицикий, Г.Д. Юшина, Энергетическое топливо СССР: Справочник. М.: Энергоатомиздат, 1991. 184 с.
- 5. Заворин, А.С. Состав и термические свойства минеральной части бурых углей (теплотехнический аспект). Новосибирск: Изд во ИТ СО РАН, 1997 187 с.