ИЗУЧЕНИЕ АДСОРБЦИОННЫХ СВОЙСТВ ПРОДУКТОВ ВЗРЫВНОГО АВТОГИДРОЛИЗА ОВСА ПОСЕВНОГО

Ваганник К.П., студент гр. XT-81, 3 курс Книсс Т.А., студентка гр. XT-82, 3 курс Костинская В.А., студентка гр. XT-82, 3 курс Научный руководитель: Коньшин В.В., д.х.н., доцент Алтайский государственный технический университет имени И.И. Ползунова г. Барнаул

В настоящее время процесс взрывного автогидролиза (ВАГ) растительного материала является объектом особого внимания химиков и технологов. ВАГ подразумевает воздействие насыщенного водяного пара на сырье при достаточно высокой температуре (180-250°С). После кратковременной обработки происходит резкий сброс давления (декомпрессия), с выбросом продукта в приемник. Благодаря паровому взрыву, на выходе получается рыхлая целлюлозосодержащая масса, в которой целлюлоза уже частично отделена от лигнина. Следует отметить, что данный метод комплексной переработки сырья растительного происхождения позволяет получать самые разнообразные химические продукты [1-2].

Для определения областей использования продуктов ВАГа зачастую необходимо определять не только технологические параметры (температура процесса, время нахождения в реакторе и др.), но также и физико-химические характеристики получаемой «взорванной» массы. Одной из таких характеристик является адсорбционная емкость. Следует отметить, что адсорбция на границе твердое тело-жидкий раствор представляет собой процесс концентрирования растворенного вещества в поверхностном слое адсорбента [4].

Целью работы явилось изучение адсорбции органической (уксусной) кислоты на продукте ВАГа, полученного при обработке водяным паром лузги овса посевного (avena sativa), а также определение удельной поверхности адсорбента.

Определение величины адсорбционной емкости проводили по методике, приведенной в работе [3]. Продукты ВАГа из оболочек овса заливались растворами уксусной кислоты концентрацией 0,039-0,417 моль/л, затем проводили перемешивание на механической мешалке в течение 20 минут. По окончании перемешивания раствор отфильтровывали и проводили определение концентрации неадсорбированной уксусной кислоты титриметрическим методом.

Данные по результатам титрования приведены в таблице 1.

Таблица 1 – Результаты определения концентрации неадсорбированной уксусной кислоты в продуктах ВАГа на основе оболочек овса

№ опыта	До адсорбции			После адсорбции			
	$V_{\scriptscriptstyle m K}$, мл	V_{iii} , мл	C_{κ}^{0} , моль/л	$V_{\!\scriptscriptstyle m K},$ мл	V_{II} , мл	$C^p_{\scriptscriptstyle{\mathrm{K}}},$ моль/л	
1	7	2,7	0,039	7	2,6	0,037	
2	7	5,8	0,083	7	5,1	0,073	
3	4	7,4	0,185	4	6,6	0,165	
4	4	10,0	0,250	4	8,7	0,218	
5	3	11,3	0,377	3	10,9	0,363	
6	3	12,5	0,417	3	11,5	0,383	

 $V_{\rm K}$ – объем уксусной кислоты, взятой для титрования;

После определения концентрации неадсорбированной уксусной кислоты был произведен расчет параметров для определения адсорбционной емкости по уравнению Гиббса. Результаты расчета представлены в таблице 2.

Таблица 2 – Значения параметров для определения адсорбционной емкости по уравнению Гиббса для продуктов ВАГа на основе оболочек овса

№ опыта	$C^p_{\scriptscriptstyle{\mathrm{K}}},$ моль/л	$\Gamma \cdot 10^4$, моль/г	-lnΓ	$\frac{C^p_{\scriptscriptstyle{\mathrm{K}}}}{\Gamma}$	-lnC ^p _K
1	0,037	0,357	10,24	1040	3,293
2	0,073	2,39	8,34	306	2,613
3	0,165	5,00	7,60	330	1,802
4	0,218	8,13	7,12	268	1,526
5	0,363	3,33	8,01	1090	1,012
6	0,383	8,33	7,09	460	0,959

Для описания адсорбции уксусной кислоты на поверхности «взорванных» оболочек овса были построены изотермы адсорбции с использованием уравнений Ленгмюра и Фрейндлиха (рисунок 1).

 $V_{\rm m}$ — объем щелочи, пошедшей на титрование; $C_{\rm K}^0$ — исходная концентрация уксусной кислоты в растворе;

 $C_{\kappa}^{\hat{p}}$ — концентрация уксусной кислоты в растворе, после проведения процесса адсорбции.

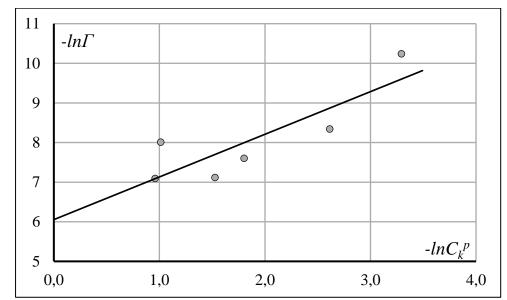


Рисунок 1 — Изотерма адсорбции уксусной кислоты на поверхности «взорванных» оболочек овса по уравнениям Фрейндлиха и Ленгмюра

При помощи графика, изображенного на рисунке 1, определены значения константы адсорбционного равновесия (lnK и K). С этой целью нами построен график в координатах $\frac{C_K^p}{\Gamma} = f(C_K^p)$, из которого, согласно уравнению Ленгмюра, определили предельную величину адсорбции (Γ_∞) как величину, обратную tga (рисунок 2).

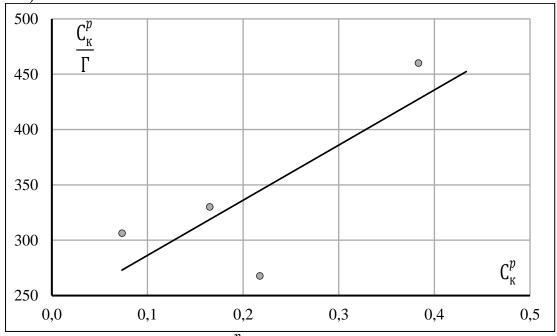


Рисунок 2 — График зависимости $\frac{C_{\kappa}^{p}}{\Gamma}$ от C_{κ}^{p} для определения предельной адсорбции уксусной кислоты на поверхности «взорванных» оболочек овса

В ходе проведенного эксперимента было определено предельное значение адсорбции уксусной кислоты на поверхности «взорванных» оболочек овса,

равное $\Gamma_{\infty}=0.002~\frac{^{\text{моль}}}{^{\text{кг}}}$. Удельная поверхность обработанного растительного материала составила $S_{yg}=301~\text{m}^2/\text{г}$. В качестве объекта сравнения вместо «взорванных» оболочек овса, использовался активированный уголь, с предельным значением адсорбции $\Gamma_{\infty}=0.0037~\frac{^{\text{моль}}}{^{\text{кг}}}$ и удельной поверхностью $S_{yg}=556.8~\text{m}^2/\text{г}$.

Таким образом, в результате проведённых исследований можно утверждать, что продукты взрывного автогидролиза овса посевного могут быть использованы в качестве адсорбентов с достаточно удовлетворительными потребительскими характеристиками.

Список литературы

- 1. Ефремов, А. А. Комплексная переработка древесных отходов с использованием метода взрывного автогидролиза / А. А. Ефремов, Кротова И.В. // Химия растительного сырья 1999. №2 С. 19-39.
- 2. Павлов И.Н. Разработка научных основ получения востребованных продуктов из недревесного целлюлозосодержащего сырья с использованием методов взрывного автогидролиза и гидротермобарической обработки / И.Н. Павлов, М.В. Обрезкова, В.В. Будаева, Г.В. Сакович, В.И. Кашковский, В.А. Евдокименко, Д.С. Каменских, В.П. Кухарь // Химия и переработка растительного сырья 2013. №3 С.184-187.
- 3. Попова, А. А. Физическая химия: учебное пособие / А. А. Попова, Т. Б. Попова. Санкт-Петербург: Лань, 2015. 496 с. ISBN 978-5-8114-1796-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/63591 (дата обращения: 09.03.2021). Режим доступа: для авториз. пользователей.
- 4. Салищева, О. В. Коллоидная химия: учебное пособие / О. В. Салищева, Ю. В. Тарасова, Н. Е. Молдагулов. Кемерово: КемГУ, 2017. 112 с. ISBN 979-5-89289-140-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/102693 (дата обращения: 09.03.2021). Режим доступа: для авториз. пользователей.