УДК 622

ИЗМЕНЕНИЕ ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЫ ФОТОУПРУГОГО ДАТЧИКА ПРИ ОДНООСТНОЙ НАГРУЗКЕ.

В.С. Зимина, студент гр. ГОс-161, І курс Научный руководитель: Т.И. Янина, к.т.н., доцент, А.С. Гумённый, к.т.н., ст. преподаватель. Кузбасский государственный технический университет имени Т.Ф. Горбачева г. Кемерово

Основой российской экономики является горнодобывающая промышленность, поэтому главной задачей считается непрерывный контроль напряженности состояния массива горных пород, и в дальнейшем от ее решения зависит своевременное прогнозирование опасных проявлений горного давления.

Деформация горных пород является наиболее общей формой проявления горного давления, которое приводит к потере устойчивости, формированию нагрузки на крепь, динамическим явлениям (горным ударам с разрушением почвы пласта, внезапным выбросам угля). Поэтому перед началом работы с горными выработками предварительно нужно рассчитать горное давление для того, чтобы определить прочность несущих элементов подземных сооружений (стенок выработок, целиков и крепей) и выбора способов управления горным давлением[1].

Рисунок 1. Деформация горных пород

Рассмотрим один из способов измерения горного давления с помощью фотоупругого датчика[2,3]. О механических процессах, протекающих в толще горных пород, вблизи скважины с датчиком можно судить по напряжениям, возникающим в чувствительном элементе этого датчика при его взаимодействии со стенками скважины в массиве горных пород. Изменение напряжен-

ного состояния определяется по интерференционной картине, полученной с помощью сплошного фотоупругого датчика.

Для изображения интерференционной картины на датчик направляется расходящийся пучок когерентного света от источника излучения (гелийнеоновый лазер), в результате чего в отраженном свете наблюдаются на экране концентрические окружности.

Интерференционная картина, полученная от сплошного фотоупругого датчика, представляет собой чередующиеся эллипсы, размеры которых увеличиваются с увеличением распределенной нагрузки (p-q) от радиуса m-го интерференционного кольца.

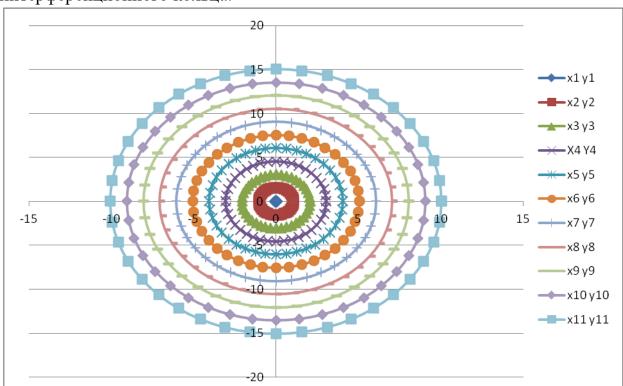


Рисунок 2. Интерференционная картина от сплошного фотоупругого датчика.

В ходе нагрузки сплошного фотоупругого датчика в интерференционной картине появляются новые полосы.

Определим зависимость радиуса интерференционного кольца от показателя преломления[4]:

$$r_x = \sqrt{4\left(n_0 + \frac{Cb_1}{4}(p - q)\right)^2 L^2 - \frac{m^2\lambda^2L^2}{d^2}};$$

$$r_y = \sqrt{4\left(n_0 - \frac{Cb_1}{4}(p - q)\mu\right)^2 L^2 - \frac{m^2\lambda^2L^2}{d^2}};$$

Исходные данные для расчета распределенной нагрузки р-q:

- Показатель преломления датчика без нагрузки $n_0 = 1,5$;
- Оптическая постоянная материала по напряжениям $C=2,65*10^{-9}$ м²/H;
- Расчетный коэффициент *b*₁=2,19;
- Расстояние от источника до датчика L=1 м;
- Порядковый номер интерференционного кольца *m*=94918;
- Длина волны $\lambda = 632$ нм;
- Толщина датчика *d*=0,02 м;
- Коэффициент Пуассона µ = 0,21;
- Нагрузка q принималась равной 10 МПа, а p задавалась от 0 до 10 МПа с шагом 1 МПа.

Таблица 1. Расчета распределенной нагрузки (p-q)

Rx	Ry	нагрузка p-q
0,059581876	0,059581876	0
1,059581876	1,559581876	1000000
2,059581876	3,059581876	2000000
3,059581876	4,559581876	3000000
4,059581876	6,059581876	4000000
5,059581876	7,559581876	5000000
6,059581876	9,059581876	6000000
7,059581876	10,55958188	7000000
8,059581876	12,05958188	8000000
9,059581876	13,55958188	9000000
10,05958188	15,05958188	10000000

Выражения однозначно определяют зависимость радиуса определенного интерференционного кольца от приложенной нагрузки. Это значит, что интерференционная картина будет изменяться в зависимости от тех механических напряжений, приложенных к датчику, что делает возможным использование сплошных фотоупругих датчиков в системах непрерывного контроля напряженного состояния массива горных пород. Использование коэффициента Пуассона µ обуславливается тем, что он характеризует способность материала сопротивляться поперечному деформированию, т.е. изменению размеров в направлении, перпендикулярном воздействию силы[5].

В результате учета коэффициента Пуассона при одноосной нагрузке концентрические окружности «вырождаются» в эллипсы, что открывает и до-

казывает дополнительные возможности «метода при контроле напряженного состояния массива горных пород. А именно позволяет определять изменение направления главных напряжений и определение их значений.

Литература:

- 1. Горная энциклопедия. Горное давление. http://www.mining-enc.ru/g/gornoe-davlenie
- 2. Гуменный, А. С. Оценка напряжений в краевых зонах массива горных пород с помощью сплошного фотоупругого датчика / А. С. Гуменный, В. В. Дырдин, Т. И. Янина // Горный информационнованалитический бюллетень. 2012. № 11. С. 103–107.
- 3. А. С. Гуменный СОВЕРШЕНСТВОВАНИЕ МЕТОДА НЕПРЕРЫВНОГО КОНТРОЛЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД НА ОСНОВЕ СПЛОШНЫХ ФОТОУПРУГИХ ДАТЧИКОВ: Автореферат канд. тех. наук. -Кемерово, 2013. 22 с.
- 4. Гуменный, А.С. Зависимость параметров интерференционной картины сплошного фотоупругого датчика от механических напряжений // А.С. Гуменный, В.В. Дырдин, Т.И. Янина // Вестник Научного центра по безопасности работ в угольной промышленности. 2011. № 2. С. 69—72.
- 5. Лабораторная работа. Определение модуля успругости первого рода и коэффициента Пуассона. http://www.soprotmat.ru/lab2.htm