УДК 666.3/.7

КЕРАМИЧЕСКИЕ ОГНЕУПОРНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СИСТЕМЫ CaO-TiO₂-ZrO₂ ДЛЯ ОБЖИГА ДЕТАЛЕЙ ЭЛЕКТРОННОЙ ТЕХНИКИ

Сергиевич О.А., научный сотрудник кафедры технология стекла и керамики Черная Д.К., студент гр. 9, V курс Научный руководитель: Дятлова Е.М., к.т.н., доцент Белорусский государственный технологический университет г. Минск

Как известно, циркониевые изделия характеризуются высокими показателями огнеупорности (около 2500 °C), термостойкости (свыше 25 теплосмен) и химической стойкостью к действию кислых и основных реагентов, что определяет их использование в качестве огнеупорных подставок для обжига деталей электронной техники (конденсаторов, интегральных схем, пьезоэлементов), которые для нужд отечественной промышленности являются предметом импорта [1].

Керамические материалы на основе ZrO_2 обладают высокой температурой обжига и термически сложным полиморфизмом, устанавливающими недостаточный срок службы таких изделий в условиях переменных термических нагрузок [2]. Таким образом, целью данной работы являлась разработка составов и технологических параметров получения огнеупорных материалов с улучшенными эксплуатационными свойствами на основе оксидной цирконийсодержащей системы с получением стабильно устойчивой модификации диоксида циркония при пониженной температуре их синтеза.

В качестве исходных сырьевых материалов использовались оксид циркония и диоксид титана марок ХЧ, мел волковысский (РБ). Получение опытных образцов производилось полусухим прессованием в две ступени с последующей сушкой и обжигом в интервале температур 1300-1500 °С. Кажущаяся плотность, водопоглощение и открытая пористость лабораторных образцов определялись по ГОСТ 2409. Истинная плотность материалов – пикнометрическим методом в соответствии с ГОСТ 2211. Температурный коэффициент линейного расширения (ТКЛР) образцов керамических материалов измерялся дилатометрах ДКВ-5АМ системы ГИС И DIL 402 PC фирмы на Netzsch (Германия). Механическая прочность при сжатии и при изгибе синтезированных материалов определялись по стандартной методике согласно ГОСТ 4071 и ГОСТ 8462. Рентгенофазовый анализ проводился на установке с Си-К_а катодом дифрактометре ДРОН-3 **D8 ADVANCE** И фирмы Bruker (Германия). Снимки поверхности образцов получены на оптическом микроскопе Leica DFC 280 (Германия). Исследование термических процессов

осуществлялось на приборе DSC 404 F3 Pegasys фирмы Netzsch (Германия) в интервале температур 50–1400 °C.

Теоретический химический состав опытных смесей представлен на рисунке 1. Первая серия образцов вклю-

для технической керамики

чила составы № 1-4. Уменьшение объемных изменений от состава № 1 к составу № 4 при увеличении количества TiO₂ и уменьшении CaO обусловлено, вероятно, уменьшением количества углекислого газа, выделяемого при разложении СаСО₃. Частично усадка, обусловленная массопереносом, компенсируются расширением образцов за счет полиморфного перехода ZrO₂ из моноклинной в тетрагональную форму. Обжиг образцов в интервале температур 1300-

1350 °С не обеспечивает достаточ-

ной степени их спекания, т.к. массоперенос в данной системе происходит по твёрдо фазовому механизму без участия жидкой фазы.

Значения критериальных свойств опытных образцов, определяющих степень их спекания, представлены в таблице 1.

Индекс	Плотность	Плотность	Пористость	
состава	истинная, г/см ³	кажущаяся, г/см ³	общая,%	Изменение объема, %
1	2,964	1,203	59,4	+21,56
2	3,192	1,314	58,8	+10,6
3	3,083	1,367	55,6	+8,80
4	4,300	1,706	60,3	+2,41
5	2,822	2,210	21,6	+5,73
6	2,962	2,288	22,7	-2,6
7	2,975	2,290	23,0	-8,7
8	3,086	2,320	24,8	-11,56
9	3,101	2,205	28,9	-1,2
10	2,964	2,286	22,9	-3,9

Таблица 1. – Свойства опытных образцов

Установлено, что опытные образцы составов № 1–4 (1 серия), обожженные при 1400 °С, имеют довольно высокую пористость в связи с минимальным содержанием ZrO₂. С увеличением содержания TiO₂ плотность опытных образцов возрастает, а их объем уменьшается. При исследовании 2 серии составов (образцы № 5–10, обожженные при 1500 °С) выявлено, что степень их спекания повышается с увеличением количества TiO₂. Вероятно, происходят стабилизационные процессы в кристаллической решётке ZrO₂, поскольку нет ярко выраженных проявлений роста объёма образцов. При минимальном содержании TiO₂ и максимальном ZrO₂ для составов № 5, 9 процессы фазовых превращений превалируют над процессами спекания, поэтому наблюдается рост объема образцов.

Значения ТКЛР для образцов № 9, 10 при большем количестве ZrO находятся в пределах $(3,2-9,0)\cdot10^{-6}$ K⁻¹, для № 6–8 составили $(2,5-9,4)\cdot10^{-6}$ K⁻¹, т. е. близки к теоретическим и входят в диапазон $(7-12,5)\cdot10^{-6}$ K⁻¹ [3]. Анализ кривых ДСК свидетельствует о том, что по сравнению с чистым ZrO₂ процесс перехода моноклинной формы в тетрагональную сдвигается в высокотемпературную область и протекает менее активно. Фазовый состав исследуемых составов представлен кристаллами ZrO₂ в тетрагональной модификации, титанатом кальция (CaTiO₃) и небольшим содержанием рутила (TiO₂). С увеличением количества TiO₂ наблюдается изменение фазового состава с возрастанием интенсивности дифракционных максимумов CaTiO₃ и снижением ZrO₂.

Таким образом, из серии исследуемых составов в качестве наиболее оптимального был выбран состав № 6, однако с целью стабилизации ZrO₂ путем перестройки его тетрагональной решетки в устойчивую при всех температурах кубическую при образовании ряда твердых растворов с ограниченной растворимостью, необходимо использовать оксиды-стабилизаторы. К ним относятся CaO, MgO и Y₂O₃, т. к. ионный радиус их катионов близок к ионному радиусу Zr²⁺ [1]. Стабилизация производилась при использовании CaF₂ в количестве от 3,48 до 13,9%; MgO – 5–10 % и Y₂O₃ от 2,5 до 5,5 %.

На рисунке 2 представлены микрофотографии опытных образцов с добавками CaF₂, MgO и Y_2O_3 (увеличение ×100).

Рисунок 2. – Микрофотографии поверхности образцов технической керамики состава № 6 с добавками: а – CaF2 (3,48 %), б – MgO (5 %), в – Y2O3 (5 %), обожженных при температуре 1500 °C

Установлено, что микроструктура всех исследованных образцов гетерофазна и однородна с достаточной светлой поверхностью: просматривается наличие пор; структура зернистая с округлой формой зерен.

Анализ ряда физико-механических показателей исследуемых составов при температуре обжига 1500 °С показал, что наилучшими свойствами обладают образцы с добавкой MgO в количестве 10 %: средние значения механической прочности при сжатии – 223,22 МПа; водопоглощения – 4,89 %, изме-

нение объема – 18,4 %. Следует отметить, что использование стабилизаторов CaO, MgO, Y_2O_3 способствует во время термообработки исследованных смесей формированию структуры, не подверженную обратимым полиморфным превращениям.

Список литературы:

1. Балкевич, В. Л. Техническая керамика: учеб. пособие / В. Л. Балкевич. – 2-е изд., перераб. и доп. – М.: Стройиздат, 1984. – 256 с.

2. Химическая технология керамики: учеб. пособие / под ред. И. Я. Гузмана. – М.: Стройматериалы, 2003. – 493 с.

3. Логвиненко, А. Т. Физико-химическое исследование алюмосиликатных и цирконийсодержащих систем и материалов / А. Т. Логвиненко. – М.: Издательство "Наука" Новосибирск, 1972. – 225 с.