УДК 54-386:546.47.56.73:547-826.1

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ИЗОНИКОТИНАТОВ МЕДИ(II), КОБАЛЬТА(II) И ЦИНКА(II)

Санникова В.А., студент гр. $XH_{\text{м}}$ -151, II курс Научный руководитель: Татаринова Э.С., к.х.н., доцент Кузбасский государственный технический университет имени Т.Ф. Горбачева г. Кемерово

Соединения металлов с изоникотиновой кислотой привлекли большое внимание из-за их интересных структурных особенностей и в связи с разнообразием проявляемых ими свойств: каталитических, люминесцентных, магнитных, термохромных [1]. Соединения на основе изоникотиновой кислоты представляют интерес в связи с тем, что изоникотиновая кислота содержит две функциональные группы (СООН и N-пиридинового кольца) и может выступать в качестве монодентатного, дитопного или мостикового лиганда.

Ранее синтезированы изоникотинаты металлов составов $Cu(C_5H_4COO)_2\cdot 4H_2O$ (I), $Co(C_5H_4COO)_2\cdot 4H_2O$ (II), $Co(C_5H_4COO)_2\cdot 4H_2O$ (III) [2], которые изучены методами химического, ИК спектроскопического, рентгенофазового и термического анализов. Смещение основных полос в ИКспектрах соединений в низкочастотную область (в соединении I при 1550 см⁻¹ и 1584 см⁻¹, в соединении II — при 1545 см⁻¹ и 1584 см⁻¹, в соединении III — при 1589 см⁻¹ и 1623 см⁻¹) по сравнению со спектром лиганда (1709 см⁻¹) свидетельствует об образовании связи через кислород карбоксильной группы. Синтезированные соединения имеют кристаллическое строение и изоструктурны. Изоникотинаты металлов термически устойчивы до температуры 143-150 °C, при которой происходит удаление кристаллизационной воды. Безводная форма соединений взрывообразно разлагается выше 300 °C [4].

Синтезированные соединения I, II и III устойчивы при хранении на воздухе, малорастворимы в воде. Растворимость в воде при $25,0\pm0,5$ °C соединения I $-3,1\cdot10^{-4}$ моль/дм³, соединения II $-10,9\cdot10^{-4}$ моль/дм³, соединения III $-23,5\cdot10^{-4}$ моль/дм³.

Тип электролита установлен при определении электропроводности синтезированных соединений на кондуктометре Анион-4120 в ячейке Кольрауша, использовали датчик комбинированный выносной ДКВ-1. В качестве растворителя для определения удельной электропроводности использовали дистиллированную воду. Измерения проведены при концентрации растворов — 10^{-3} моль/дм³. Молярная электропроводность растворов в воде соединения I — $111~\rm Cm\cdot cm^2\cdot моль^{-1}$, соединения II — $169~\rm Cm\cdot cm^2\cdot моль^{-1}$, соединения III - $172~\rm Cm\cdot cm^2\cdot моль^{-1}$. В соответствии с полученными данными можно сделать вы-

вод, что синтезированные изоникотинаты металлов соответствуют электролиту типа 1:2 [3].

Плотности (г/см³) соединений определены пикнометрическим методом в толуоле при 25 °C. Плотность соединения I-1,38 г/см³, соединения II-1,32 г/см³, соединения III-1,53 г/см³.

Выводы:

Кристаллические соединения состава $Cu(C_5H_4NCOO)_2\cdot 4H_2O$, $Co(C_5H_4NCOO)_2\cdot 4H_2O$, $Zn(C_5H_4NCOO)_2\cdot 4H_2O$, полученные при взаимодействии двуводного хлорида меди, гидроксокарбонатов кобальта или цинка с изоникотиновой кислотой, малорастворимы в воде и соответствуют электролиту типа 1:2. Плотность увеличивается с увеличением атомной массы и уменьшением радиусов ионов металлов. Полученные изоникотинаты термически устойчивы до температуры 143-150 °C, при которой происходит удаление кристаллизационной воды. Безводная форма соединений взрывообразно разлагается выше 300 °C. Связь в соединениях образуется за счет атома кислорода карбоксильной группы.

Список литературы:

- 1. Завахина, М. С. Синтез, кристаллическая структура и люминесцентные свойства координационных полимеров на основе изоникотинатов кадмия / М.С. Завахина, Д.Г. Самсоненко, М.П. Юткин, И.А. Василенко // Коорд. химия. 2013. №4. С. 211 217.
- 2. Таскаева, В.А. Синтез металло-органических координаионных соединений с изоникотиновой кислотой / В.А. Таскаева, Е.А. Черепанова, Е.О. Жарикова // Матер. VI Всероссийской 59 научно-практ. конф. молодых ученых с международным участием «Россия Молодая». Кемерово. 2014. С. 1 4.
- 3. Таскаева, В.А. Синтез и исследование свойств соединений меди(II), кобальта(II), цинка(II) с изоникотиновой кислотой / В.А. Таскаева // Матер. XVI Междунар. научно-практ. конф. студентов и молодых ученых «Химия и химическая технология в XXI веке». Томск. 2015. С. 90 91.
- 4. Кукушкин, Ю.Н. Химия координационных соединений: Учеб. пособие для студентов хим. и хим-технол. спец. вузов / Ю.Н. Кукушкин. М.: Высш. шк., 1985. 455 с.