УДК 662.76

ОПТИМИЗАЦИЯ РЕЖИМОВ ГОРЕНИЯ ПРИРОДНОГО ГАЗА И ЭКОНОМИЯ ТОПЛИВА В ЭНЕРГЕТИЧЕСКИХ УСТАНОВКАХ

Иманалиева Т.Т., ХНм-151, II курс Научный руководитель: Тихомирова А.В., к.х.н., доцент Кузбасский государственный технический университет имени Т.Ф. Горбачева г. Кемерово.

Атмосферный воздух является основной средой существования биосферы, в том числе человека. На экологическую обстановку существенно влияют газовые примеси, которые по происхождению могут быть природными и антропогенными [1].

Откуда появляются вредные вещества? Например, источниками загрязнения атмосферы дымовыми газами являются практически все продукты сгорания тепловых двигателей и установок, которые сжигают углеводородное топливо [2]. Основной объем вредных выбросов в атмосферу техногенного характера составляют продукты сжигания топлива на предприятиях промышленного производства [3]. С другой стороны, затраты на топливо составляют заметную часть бюджета теплоснабжающих предприятий. Поэтому не удивительно, что в условиях роста цен на энергоносители и обострения экологических проблем все более высокие требования предъявляются к использованию энергии органического топлива, что делает актуальную проблему оптимизации режимов горения и экономии топлива в энергетических установках [4].

Объектом данного исследования являлись дымовые уходящие газы на котельной №1 КАО «Азот». Данные газы в дальнейшем используются для обогрева котлов, а затем выбрасываются в атмосферу.

Технологическая котельная №1 (далее по тексту — ТК№1) входит в состав цеха Теплоснабжения (далее по тексту — ЦТС), введена в эксплуатацию в 2005 году. Проектная мощность по пару с температурой 440 °C составляет 75 т/ч. Производит перегретый водяной пар методом испарения питательной воды и перегрева насыщенного пара за счет сгорания природного газа в топке котла. В качестве питательной воды используется паровой конденсат Т = (95÷110)°С из корпуса 235 ЦТС и частично обессоленная вода из отделения химводоочистки цеха «Водоснабжения и канализования». Вырабатываемый пар Р = 39 кгс/см² выдается в сеть предприятия. Нагрузка котла по пару (10÷25) т/ч задается подачей газа в горелку (700÷2300) нм³ /ч регулируется в зависимости от давления пара на выходе из котла. Воздух для горения подается дутьевым вентилятором. Предусмотрено автоматическое регулирование температуры воздуха

(0÷30)°С. Дымовые газы из топки котла выводятся через экономайзер дымососом в дымовую трубу высотой 100 м [6].

Анализ дымовых газов проводились 1 раз в неделю, использую автоматические газоанализатор «Монолит» в ТК№1 на источнике 1264.

При помощи режектора на источнике создается разрежение воздуха, давая возможность измерять количество дымовых газов, исключая их отбор на высоте. Все результаты заносились в журнал и передавались начальнику цеха и охране труда.

В таблице представлены данные годовых измерений состава дымовых газов. Основные загрязнителями в них — диоксид азота, оксид углерода, диоксид серы, которые не только являются парниковыми газами, но и способны соединяться с атмосферными осадками, образуя кислоты. Дымовые газы входят в перечень загрязняющих веществ, в отношении которых применяются меры государственного регулирования в области охраны окружающей среды, установленные Правительством Российской Федерации [7].

Таблица Состав топочных газов ТК№1 КАО Азот центральной тепловой станции за 2016гол.

201010Д.										
ω,%(масс.)	Норма,	январь					среднее			
	$M\Gamma/M^3$	1	2		3	4				
NO_2	190	116	108		124	122	118			
SO_2	0,49	0	0		0	0	0			
CO	162	0,3	0,2		4	0	1,1			
			среднее							
		1	2	2 3		5				
NO_2	190	146	124	114	142	179	141			
SO_2	0,49	0	0	0	0	0	0			
CO	162	0,6	4,4	1,8	1	4,1	2			
			среднее							
		1	2		3	4				
NO_2	190	161	164	-	95	90	128			
SO_2	0,49	0	0		0	0	0			
CO	162	4,3	0		7,1	0,8	3			
			среднее							
		1	2		3	4				
NO_2	190	94	89		81	83	87			
SO_2	0,49	0	0		0	0	0			
CO	162	0,3	0	май	2,3	2,3	1			
			среднее							
		1	2	3	4	5				
NO_2	190	84	85	93	83	82	85			
SO_2	0,49	0	0	0	0	0	0			
CO	162	0	1,7	4,2	0	0,5	1			

			среднее				
		1	2		3	4	
NO_2	190	77	80		71	139	92
SO_2	0,49	0	0		0	0	0
СО	162	1,7	3,6		0,1	13,4	4
			среднее				
		1	2		3	4	
NO_2	190	83	87		88	85	86
SO_2	0,49	0	0		0	0	0
CO	162	8,7	0		4,7	0	3
			среднее				
		1	2	3	4	5	
NO_2	190	93	90	99	107	115	101
SO_2	0,49	0	0	0	0	0	0
CO	162	0	0	0 ентябр	0	0	1
			среднее				
		1	2	3		4	
NO_2	190	126	144	14	47	144	140
SO_2	0,49	0	0	()	0	0
CO	162	0	0 0 октябрь			0	0
			среднее				
		1	2	3	4	5	
NO_2	190	172	136	135	142	155	148
SO_2	0,49	0	0	0	0	0	0
СО	162	2,8	0	ноябрь	0	0	1
			среднее				
		1	2	3		4	
NO_2	190	104	106	11	6	108	109
SO_2	0,49	0	0	C)	0	0
CO	162	0	0	C)	0	0
			среднее				
		1	2	3		4	
NO_2	190	91	103	10	6	80	95
SO_2	0,49	0	0	0		0	0
CO	162	0	0			0	0

Концентрация дымовых газов зависит от времени года, соотношения «газ-воздух» и природы поступающего природного газа. Как видно из таблицы, все данные соответствуют нормам, однако, в некоторых случаях концентрация NO_2 близка к предельно допустимой.

Предлагаем экономить топливо и уменьшить вредные выбросы давно известным способом минимизации потери тепла с дымовыми газами, то есть управлением соотношением «топливо-газ». Чего можно добиться

установлением более современных горелок и аналоговых датчиков загазованности, которые могут сэкономить на ремонте и позволят более точно контролировать выбросы дымовых газов в атмосферу.

Список литературы:

- 1. Росляков П.В. Методы защиты окружающей среды. Издательский дом МЭИ, 2007. 336 с.
- 2. Равич М.Б. Упрощенная методика теплотехнических расчетов. М., изд-во АН СССР, 1966. 407 с.
- 3. Reducing NOx emissions using Carbon Monoxide (CO) measurement. Rosemont Analytical, 1999. Carbon Monoxide Measurement in Coal-Fired Power Boilers/Yokogawa Corporation of America, 2008. 284 c.
- 4. Алексеева А.К. Методы снижения содержания оксидов серы в продуктах сгорания в котельных агрегатах. Сборник студенческих научных работ факультета ФМФ ДонНТУ. Выпуск 9, 2006. 84 с.
- 5. Плешанов К.А. Разработка и иследование способа сжигания топлив с умеренным контролируемым химическим недожогом. Автореферат Диссертация. Моск. энерг. ин-т (МЭИ ТУ). М., 2010. 20 с.
- 6. Постоянный технологический регламент, технологической котельной №1 цеха теплоснобжения №108. 2016 г.
- 7. Федеральный закон от 10.01.2002 N 7-ФЗ (ред. от 03.07.2016) «Об охране окружающей среды» (с изм. и доп., вступ. в силу с 01.03.2017).