УДК 681.51

СИСТЕМА АВТОМАТИЧЕСКОГО КОНТРОЛЯ В УСЛОВИЯХ ГПС (САК)

М.С. Татарников, студент гр.МРб-131, 4 курс Научный руководитель: В.В. Трухин, доцент (к. н.)

Система автоматического контроля (САК) является наиболее важнейшим звеном ГПС, именно она определяет и дает возможность организации безлюдного производства при изготовлении качественной продукции.

Эта система решает следующие вопросы:

- Сравнение фактических значений параметров с заданными.
- Передача информации и рассогласованиях с модулями производственного процесса для принятия решений при различных условиях управления ГПС.
- Получение и представление информации об исполнение функций
- Получение и представление информации о свойствах, техническом состоянии и пространственном расположении контролируемых объектов, а также о состоянии технологической среды и производственных условий.

Система автоматического контроля (САК) должна предоставлять:

- Надежность средств контроля.
- Полноту и достоверность контроля, в том числе и передачи информации
- Возможность автоматической перестройки средств контроля в пределах заданной номенклатуры контролируемых объектов

Структура САК показана на рисунке 1.

Рис. 1. Структура системы автоматического контроля (САК)

Для ГПС задачи контроля во много раз усложняются тем, что эти системы должны функционировать в условиях стохастически (случайно) изменяющейся во времени номенклатуры деталей. Это вызывает потребность в переходе от специальных средств и процедур контроля, характерных для крупно серийного, а так же массового производства, к универсальным, на основе обширного внедрения средств ЭВМ. САК затрагивает все элементы ГПС и их связи, обеспечивая достоверность информации, используемой в системе управления.

В условиях ГПС нужно измерять в общей сложности около сотни, а то и тысячи физических, химических и технико-экономических величин. Это следует из того, что система автоматического контроля является главным звеном между ГПС, его обеспечивающими системами и системой управления (рис. 2).

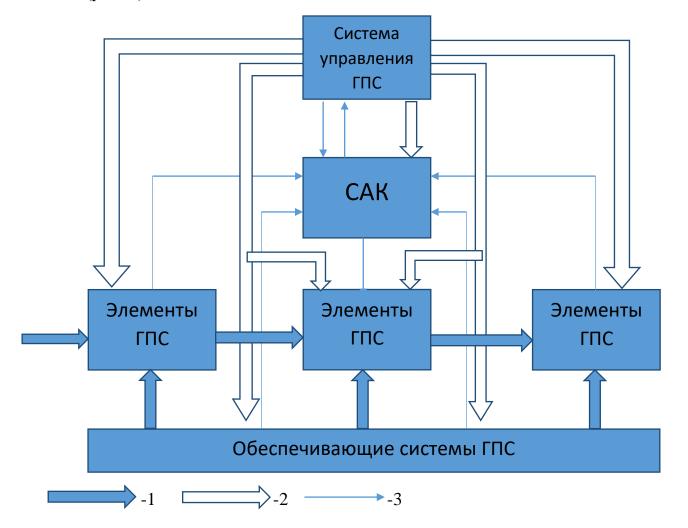


Рисунок 2. Взаимосвязи САК с элементами ГПС

1 - материальные потоки: 2 — управляющие сигналы; 3 — контрольноизмерительная информация

Размерный контроль делается не только после окончания обработки изделий, с целью выявления брака, но и в процессе самой обработки изделия и перед ней, что дает возможность внести исправления в процессе обработки и, следовательно, добиться требуемого качества деталей.

Производительная эксплуатация ГПС, особенно в безлюдном режиме без участия человека, невероятна без оснащения ГПС средствами автоматического контроля. Размерный контроль в производстве проводится вне станка или на станке.

Для размерного контроля вне станка обычно нужно применить контрольный пост (КП), в составе гибкого производственного участка такие станки оснащаются координатно- измерительными машинами (КИМ).

Сам контроль на рабочем месте может быть возможен прямо на станке (внутренний) или рядом с оборудованием (внешний). Контроль качества изделия во время формообразования с помощью средства активного контроля не увеличивает цикл и время изготовления изделия, а контроль после формообразования (пассивный) приводит к увеличению продолжительности цикла, но позволяет убрать вероятность появления брака.

Автоматический размерный контроль (АРК) на круглошлифовальных станках начал примется довольно давно. Разные датчики активного контроля определяют размер процесса шлифования и применяются для управления циклом перемещения шлифовального круга. По данным результатам измерений строятся команды на изменение подачи шлифовального круга его перемещения и т.д.

АРК на станках токарной, сверлильной, и фрезерно-расточной группы стал возможен благодаря появлению датчиков касания, которые с высокой точностью фиксирую момент касания щупа с контролируемой поверхностью. Комплекс устройств в составе индикатора контакта показан на рис.2.

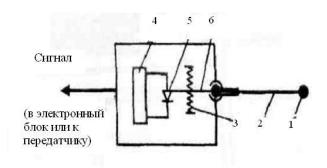


Рис.2. Датчик касания измерительной головки: 1-наконечник щупа, 2- щуп, 3-механизм уравновешивания щупа, 4- блок формирователь касания, 5-контакт, 6- передаточный механизм

Для контроля детали на станке измерительная головка устанавливается в одной из позиций револьверной головки или инструментального магазина и для измерения выходит на рабочую поверхность.

Автоматизация сложных деталей в машиностроении и необходимость повышения их качества требуют большого сокращения времени, затраченного на контроль, повышение точности и надежности.

В измерительной технике наблюдается 2 направления: первое, в массовом производстве для 100% контроля используются контрольные автоматы, которые за малый промежуток времени проверяют множество единичных размеров, второе — в связи с непростой пространственной формой обрабатываемой детали в связи с работающими в серийном производстве станков с ЧПУ все наибольшее значение приобретают координатные измерительные машины (КИМ).

КИМ состоит из малой управляющей ЭВМ с периферийными устройствами ввода программ и вывода результатов измерений, приводов и измерительных головок, измерительных систем перемещения узлов.

Универсальность и метрологический потенциал КИМ в значительной степени определяются их ПО и комплектацией вспомогательного метрологического оборудования.

Общий вид КИМ на рисунке 3.

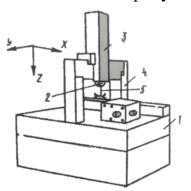


Рисунок 3. Координатноизмерительная машина: 1-стол, 2- пиноль, 3- измерительная бабка, 4- портал, 5измерительная головка

Применение КИМ вызвано необходимостью измерять изделия сложных форм со сложными контурами, со множеством расположенных в размерных плоскостях отверстий, с труднодоступными местами.

Развитие КИМ как производственного средства измерения и их распространение связаны с внедрением в промышленности станков с ЧПУ,

удаление простоев которых за время контроля смогло сделать рентабельным применение КИМ, несмотря на большую стоимость и сделали базу для серийного производства КИМ в большинстве развитых странах.

Возможность и целесообразность применения КИМ основано на их плюсах перед другими измерениями:

- Универсальность
- Решение пространственных задач измерения
- Легкость обслуживания
- Сокращение времени измерения
- Автоматическая обработка данных измерений

Большие функциональные возможности КИМ в сочетании с точностью и высокой производительностью контроля в большинство раз превышает производительность используемых в наше время средств контроля изделий сложной формы, возможностью обеспечения обратной связи со станками и возможностью полноценно вписываться в автоматизированные производственные системы- все это делает КИМ средством контроля размеров и геометрической формы большого количества машиностроительных деталей.

Отсутствие КИМ плохо сказывается на эффективности применения станков с ЧПУ, но успешного применения КИМ область значительно больше, чем область применения этих станков.

В самом недалеком будущем КИМ будет неотъемлемым элементом любого современного машиностроительного производства и будет использоваться в измерительных лабораториях, автоматизированных участках и цехах, контрольных пунктах.

САК обеспечивает качественное изготовление изделий в условиях ГПС, повышает точность и надежность контроля, сокращает время, затрачиваемое на контроль.

Список литературы

- 1. Р.И. Гжиров, П.П. Серебреницкий. Программирование обработки на станках с ЧПУ. Справочник, Л.: Машиностроение, 1990. 592 с.
- 2. Роботизированные технологические комплексы / Г.И. Костюк, О.О. Баранов, И.Г. Левченко, В.А. Фадеев Учеб. Пособие. Харьков. Нац. аэрокосмический университет «ХАИ», 2003. 214с.

- 3. Широков А.Г. Склады в ГПС. М.: Машиностроение, 1988. 216с.
- 4. Трухин В.В. Гибкие производственные системы. Учебное пособие-Кемерово 2010