УДК 544.032

ДЕГРАДАЦИЯ НАНОРАЗМЕРНЫХ ПЛЕНОК ВИСМУТА В СИСТЕМЕ Bi – MoO₃

¹Старкина О.А., студент группы X-121, IV курс,
²Суровая В.Э., к.х.н., ст. преподаватель
научный руководитель: ¹Суровой Э.П. д.х.н., профессор
¹Кемеровский государственный университет
²Кузбасский государственный технический университет им. Т.Ф. Горбачева г. Кемерово

Методами оптической спектроскопии, гравиметрии, исследованы превращения в наноразмерной системе $Bi-MoO_3$ в зависимости от толщины пленок Bi (d = 3-92 нм) и MoO_3 (d = 5-40 нм), времени термообработки при T = 473 К. Измерена контактная разность потенциалов для пленок Bi, MoO_3 и фото-ЭДС системы $Bi-MoO_3$. Построена диаграмма энергетических зон системы $Bi-MoO_3$.

С уменьшением размеров объектов значительно уменьшается и продолжительность протекания технологических процессов в конкретной системе, то есть возрастает ее потенциальное быстродействие, что очень важно для электроники и вычислительной техники [1].

Выяснение закономерностей термостимулированных превращений наноразмерных гетеросистем Bi-MoO₃, представляет интерес в связи с необходимостью создания прочного физико-химического фундамента наноструктурированного состояния вещества, которая будет служить надежной научной базой для получения новых функциональных материалов, обладающих полезными для практического использования свойствами.

Гетеросистемы Bi - MoO₃ готовили методом термического испарения в вакууме (2·10⁻³ Па) путем последовательного нанесения слоев МоО₃ (на предварительно нанесенный, на подложки из стекла) слой Ві, используя вакуумный универсальный пост «ВУП-5М» [2 – 4]. Подложками служили предварительно очищенные стекла от фотопластинок ГОСТ 9284-59 [2 - 4]. определяли спектрофотометрическим Толщину пленок Bi И MoO_3 (спектрофотометр «Shimadzu UV-1700»), микроскопическим (интерференционный микроскоп «МИИ-4») и гравиметрическим (кварцевый резонатор) методами. Образцы подвергали термической обработке в течение 0,05 – 120 минут в сушильном шкафу «Memmert BE 300». Регистрацию термической обработки осуществляли эффектов после до И гравиметрическим и спектрофотометрическим (в диапазоне длин волн 190-1100 нм, используя спектрофотометр «Shimadzu UV-1700») методами.

Измерения фотоЭДС (U_ф) проводили на высоковакуумном экспериментальном комплексе, включающем электрометрический вольтметр

В7-30 [5]. В качестве источников излучения применяли ртутную (ДРТ–250) и ксеноновую (ДКсШ–1000) лампы. Для выделения требуемого участка спектра использовали монохроматоры МДР–2 и SPM-2, светофильтры. Контактную разность потенциалов (КРП) между пленками висмута, оксида молибдена (VI) и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [6].

В результате исследований оптических свойств наноразмерных пленок МоО₃, Ві и двухслойных систем Ві-МоО₃ было установлено, что спектры поглощения систем Bi-MoO₃ в коротковолновой области спектра ($\lambda = 300-500$ нм) по мере уменьшения толщины пленок висмута в значительной степени определяются поглощением пленок МоО3. В длинноволновой области спектра $\lambda = 500-1100$ нм в большей степени проявляются полосы поглощения пленок висмута. По мере увеличения толщины пленок висмута наблюдается оптической увеличение плотности Bi-MoO₃ в систем лиапазоне $\lambda = 300-1100$ нм. При увеличении толщины пленок МоО3 оптическая плотность систем Bi-MoO₃ также возрастает, однако, при этом в большей степени проявляется полоса поглощения в коротковолновой области спектра $(\lambda = 300-600 \text{ HM}).$

Для выяснения возможного взаимодействия между пленками висмута и оксида молибдена (VI) в процессе приготовления систем Bi-MoO₃ были сопоставлены экспериментальные спектры поглощения систем с рассчитанными спектрами поглощения, полученными суммированием при каждой длине волны значений оптической плотности индивидуальных пленок MoO₃ и Bi аналогичной толщины. Рассчитанные и экспериментальные спектры поглощения всех исследованных систем Bi-MoO₃ не совпадают.

На рисунке 1 приведены экспериментальные спектры поглощения пленок MoO₃, Bi, системы Bi-MoO₃ и рассчитанный спектр поглощения системы Bi-MoO₃.

Рис. 1 Экспериментальные (1,3,5) и рассчитанные (2, 4) спектры поглощения: Bi–MoO₃ (1, 2), Bi (3), MoO₃ (4, 5) (d(Bi) = 17 нм, d(MoO₃) = 20 нм). Кузбасский государственный технический университет имения Т.Ф. Горбачева 19-22 апреля 2016 г., Россия, г. Кемерово

На экспериментальных кривых в длинноволновой области спектра в диапазоне $\lambda = 450-1100$ нм проявляется широкая полоса поглощения с максимумом при $\lambda \approx 870$ нм, а в коротковолновой области спектра в диапазоне $\lambda = 300$ - 450 нм наблюдается уменьшение оптической плотности и смещение края полосы поглощения системы Bi-MoO₃ в коротковолновую область спектра.

В результате термической обработки систем Bi - MoO₃ разной толщины при температуре 473 К в атмосферных условиях спектры поглощения и отражения образцов претерпевают существенные изменения. Причем, наблюдаемые изменения спектров поглощения и отражения, а также предельные значения оптической плотности в максимумах полос поглощения после термической обработки образцов зависят от первоначальной толщины пленок Bi и MoO₃ и времени термообработки.

На рисунке 2 в качестве примера представлены спектры поглощения системы Bi - MoO_3 (d(Bi) = 21 нм, d(MoO_3) = 6 нм) до (1) и после термической обработки при T = 473 К.

Рис. 2 Спектры поглощения системы Bi - MoO₃ (d(Bi) = 21 нм, d(MoO₃) = 6 нм) до (1) и после термической обработки при T = 473 К: 2 - 20с, 3 - 1,5мин, 4 - 3мин, 5 - 5мин, 6 - 7мин, 7 - 10мин, 8 - 15мин, 9 - 20мин, 10 - 30мин, 11 - 60мин, 12 - 240мин.

Видно, что слева от изобестической точки (λ = 350нм) наблюдается увеличение оптической плотности, в длинноволновой области спектра – справа от изобестической точки наблюдается уменьшение оптической плотности образцов.

Для выяснения закономерностей протекания процесса термического превращения в системах были рассчитаны и построены кинетические зависимости степени превращения $\alpha = f(\tau)$ (где τ – время термической обработки) при различных длинах волн термообработки. Было установлено,

что степень превращения систем Bi - MoO₃ зависит от первоначальной толщины пленок Bi, MoO₃ и времени термической обработки. По мере увеличения времени термообработки степень превращения систем Bi - MoO₃ возрастает. По мере уменьшения толщины пленки Bi (при постоянной толщине слоя MoO₃) в системе Bi - MoO₃ при постоянном времени термообработки степень превращения возрастает.

Для выяснения причин, вызывающих наблюдаемые изменения металлом оптических свойств MoO₃ в разных спектральных областях были измерены величина и знак U_{ϕ} для систем Bi-MoO₃, КРП между MoO₃, Bi и электродом сравнения из платины в условиях атмосферы ($P = 1 \cdot 10^5$ Па) и высокого вакуума ($P = 1 \cdot 10^{-5}$ Па).

Таблица 1

Образец	КРП, В	
	$P = 1 \cdot 10^5 \Pi a$	$P = 1 \cdot 10^{-5} \Pi a$
Пленка МоО ₃ (<i>d</i> =90 нм)	+0,72	+0,71
Пленка Bi (<i>d</i> =92 нм)	+1,11	+1,11

Контактная разность потенциалов между пленками висмута, оксида молибдена (VI) и электродом сравнения из платины при T = 293 К

Из таблицы 1 видно, что значения КРП между оксидом молибдена (VI) и электродом сравнения из платины при понижении давления в измерительной ячейке уменьшаются. Наблюдаемое отличие в значениях работ выхода Ві и MoO_3 (табл. 1) свидетельствует о возможности при формировании плотного контакта и установлении в системе Bi-MoO₃ состояния термодинамического равновесия результирующего потока электронов из висмута в оксид молибдена (VI).

В результате измерений U_{ϕ} для систем Bi-MoO₃ в диапазоне $\lambda = 300-1100$ нм было установлено, что в процессе облучения светом формируется U_{ϕ} положительного потенциала со стороны слоя MoO₃. Формирование U_{ϕ} для систем Bi-MoO₃ прямо свидетельствует о разделении неравновесных носителей заряда на границе раздела. Из анализа результатов измерений U_{ϕ} и КРП (табл. 1) было установлено, что при создании контакта оксида молибдена (VI) с висмутом в результате электронных переходов со стороны MoO₃ образуется обогащенный электронами антизапорный слой.

Диаграмма энергетических зон систем $Bi-MoO_3$, при построении которой использованы результаты измерений спектров поглощения и отражения, спектрального распределения U_{Φ} , КРП (табл. 1) представлена на рисунке 3.

Рис. З Диаграмма энергетических зон системы Ві–МоО₃:

Е_v – уровень потолка валентной зоны, Е_c – уровень дна зоны проводимости, Е_F – уровень Ферми, Е₀ – уровень вакуума, Т₁, Т₂, – уровни центров захвата, Т_П⁺ – уровни ПЭСК, R⁺ – центр рекомбинации.

Полученные в настоящей работе результаты исследований свидетельствуют о контактной природе эффектов изменения висмутом скорости термического превращения пленок MoO₃.

Список литературы:

1. Балобанов В.И. Нанотехнологии. Наука будущего. – М.: Эксмо, 2009. – 256 с.

2. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Бин С.В. Кинетические закономерности термических превращений в наноразмерных пленках висмута // Журн. физ. химии. – 2012. – Т. 86. – № 4. – С. 702 – 709.

3. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Борисова Н.В., Рамазанова Г.О. Закономерности фотостимулированных превращений в наноразмерных пленках MoO₃ // Журн. физ. химии. – 2013. – Т.87. – № 12. – С. 2105 – 2109.

4. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Заиконникова Т.М. Кинетические закономерности формирования наноразмерной системы марганец – оксид марганца // Журн. физ. химии. – 2016. – Т. 90. – № 3. – С. 411 – 417.

5.Суровой Э.П., Бугерко Л.Н. Термостимулированное газовыделение из систем азид серебра – металл // Химическая физика. – 2002. – Т. 21. – № 7. – С. 74 – 78.

6. Суровой Э.П., Титов И.В., Бугерко Л.Н. Исследование состояния поверхности азидов свинца, серебра и таллия в процессе фотолиза методом КРП / Материаловедение. – 2005. – № 7. – С. 15 – 20.