АНТИФРИКЦИОННЫЕ УГЛЕПЛАСТИКИ ДЛЯ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Митрофанов С. В. КАО Азот

Рассмотрены характеристики и возможности применения антифрикционных углепластиков для подшипников скольжения. Подшипники скольжения рассчитаны на режим жидкостного трения (гидродинамическая смазка). В них рабочие поверхности цапфы и вкладыша разделены слоем смазки, что исключает возможность их непосредственного контакта; потери на трение в данном случае весьма малы. Для оценки антифрикционных свойств материалов используются такие характеристики,

как коэффициент трения, интенсивность изнашивания и мощность трения ру

(р – контактное давление, v – скорость скольжения) [1].

При пуске и остановке насосного оборудования, когда частота вращения ротора мала, неизбежен переход к полужидкостному и граничному трению. При таком режимепроисходит основной износ материалов пар трения, поэтому особое внимание нужно уделять исследованию материалов в условиях граничного трения. Требования к материалам для подшипников скольжения центробежных насосов: прочность и ударостойкость на уровне антифрикционных металлов (баббита, оловянной бронзы); стабильность размеров и прочности при длительной эксплуатации в перекачиваемой жидкости в широком диапазоне температур от — 200 до + 200 °C (в зависимости от предназначения насоса); обеспечение работоспособности подшипника за счет смазывания перекачиваемой жидкостью; высокая технологичность.

Так как антифрикционные металлы неработоспособны без смазки, выбраны неметаллические материалы, из которых наиболее перспективны углепластики, сочетающие в себе механические, триботехнические и технологические свойства. Основным компонентом углепластика является углеродная ткань. Рентгеноструктурные характеристики углеродных волокон показали влияние структуры ткани на процессы изнашивания и поверхность трения антифрикционных углепластиков. Наилучшие триботехнические характеристики имеют углепластики с наноструктурированными углеродными волокнами.

Рис. 1. Углепластики УГЭТ и ФУТ, подшипники скольжения из углепластика УГЭТ

На основании этого были установлены критерии выбора армирующих материалов

антифрикционных углепластиков [2]:

□ Образующиеся в процессе трения продукты диспергирования армирующего

материала должны обладать свойствами твердой смазки или приобретать эти свойства в

процессе контактного взаимодействия.

□ Для облегчения диспергирования в процессе фрикционного взаимодействия

углеволокнистые армирующие материалы должны иметь удельную поверхность – более 100...150 м2/г.

Преимущества использования антифрикционных теплостойких углепластиков в условиях совместного действия воды, высоких скоростей скольжения и контактных давлений обусловлены наноструктурой низкомодульных (карбонизированных) углеродных волокон – армирующего материала антифрикционных углепластиков.

ФГУП ЦНИИ «Композиционных материалов» «ПРОМЕТЕЙ» были разработаны три вида антифрикционных углепластиков [3]:

1. Высокопрочный эпоксидный углепластик марки УГЭТ, предназначенный для тяжелонагруженных тихоходных узлов трения. 2.

Теплостойкий фенольный углепластик ФУТ, предназначенный для скоростных подшипников, эксплуатируемых при температуре до 125 □ С.

3. Теплостойкий полифениленсульфидный углепластик марки УПФС, предназначенный для скоростных подшипников, эксплуатируемых при температуре до $200\Box C$. Антифрикционные углепластики УГЭТ и ФУТ являются высокопрочными, износостойкими материалами, не изменяющими свои размеры и свойства при длительной эксплуатации в воде при 20^{0} С.

свои размеры и своиства при длительнои эксплуатации в воде при 20°С. Углепластики УГЭТ и ФУТ обладают высокой ударопрочностью, что исключает сколы, растрескивания и другие повреждения узлов

трения, работающих в условиях интенсивных ударных нагрузок; обрабатываются на стандартном металлорежущем оборудовании

твердосплавным или алмазным инструментом. Свойства углепластиков приведены в таблице 1.

Таблица 1 – Свойства углепластиков

Характеристика	Единицы измерения	Наименование материала	
		ФУТ, (до 40 м/с)	УГЭТ. (до 1 м/с)
Плотность	KI/M³	1450	1450
Прочность при сжатии	МПа	130	250
Модуль Юнга	ГПа	15	15
Коэффициент термического расширения	1/°C·10 ⁻⁵	1,6	1,6
Изменение линейных размеров при работе в воде	%	отсутствует	отсутствует
Допускаемое контактное давление	МПа	5,0	60
Интенсивность изнашивания при смазке водой	8	0,5 ·10-9	0,3·10-9
Коэффициент трения		0,06	0,12
Рабочая температура	°C	-80 +140	-80 +100

Углепластик ФУТ применяется в насосах ЦНС на ОАО «Татнефть», ОАО «ЛУКОЙЛ-Пермь», ОАО «Тюменьнефтегаз» и др.

выводы

Замена	традиционных	выносных	баббитовых	подшипников	скольжения
насосов	на встроенные г	одшипники	из углепласти	ика ФУТ позвол	ит:

□ значительно (до 3-х) снизить вибрационную нагрузку на узлы насоса з	3a		
счет сближения опор на роторе и повышенных демпфирующих свойст	B		
материала ФУТ (по сравнению с металлами);			

□ снизить	энергопотребление	по сравнению	с принудительной	системой
охлажлені	ия маслом баббитовь	іх полшипник	ов скольжения:	

□ исключить экологические аварии,	связанные с утечкой масла из систем
смазывания выносных баббитовых п	ІОДШИПНИКОВ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Современные машиностроительные материалы. Нематаллические материалы / Под ред. И.В.Горынина и А.С. Орыщенко. СПб.: НПО «Профессонал», 2012. 916 с.
- 2. Антифрикционные углепластики для подшипников скольжения центробежных насосов / А.С. Орыщенко [и др.] // Химическое и нефтегазовое машиностроение, 2014. –№5.

VIII Всероссийская научно-практическая конференция молодых ученых с международным участием «Россия молодая»

3. Антифрикционные углепластики марок УГЭТ, ФУТ и теплостойкие углепластики марки УФПС [Электронный ресурс]. — Режим доступа: http://www.crismprometey. ru/science/nonmetallic/ugleplastik-uget-fut.aspx.